Rotary position sensor with ohmic signal output or voltage output

Measuring principle	Change in resistance on the voltage divider, hall effect
Measuring range	Type R1: 50°... 360° in 10° steps (linear acquisition angle) Type U2: 50°... 360° in 10° steps (linear acquisition angle)
Rotation angle	360° without mechanical limitation
Output signal	Type R1: 2 signal outputs: $0 . . .2 \mathrm{k} \Omega$ Type U2: 2 signal outputs: 2 ... 10 VDC, crossed characteristic curves
Operating temperature	-40 ... $70{ }^{\circ} \mathrm{C}$
Protection class	IP66 as per DIN VDE 0470 (IP68 on request)
Electrical connection	Design Q1: Terminals for max. $2.5 \mathrm{~mm}^{2}$, with M20 screw connection as per DIN EN 50262 Design Q2: $4 \times 2 \times 0.33 \mathrm{~mm}^{2}$ fixed connection cables, 3 m in length, M16 screw connection as per DIN EN 50262

Scope of application

The type DWA-Q rotary position sensors are robust, mainte-nance-free sensors that are particularly used in the Shipbuilding industry and machinery and plant engineering industry to convert the mechanical rotation angle of a shaft into an electrical signal (e.g. for measuring the rudder angle or adjusting the pitch).

Measuring principle

The instrument shaft is connected to a double sensor. Depending on requirements, the angle position that can be acquired electronically ($50^{\circ} \ldots 360^{\circ}$ in 10° steps (linear acquisition angle)) must be selected and adjusted within a mechanical revolution. The version with ohmic resistor connection provides a passive electrical signal; the version with analogue current output provides an active electrical signal.

Special features

- Reference position mark
- Maintenance-free operation
- No reference run necessary
- Potential-separated channels

Dimensioned drawing, connection and wiring diagrams

DWA-Q1 (design 1) dimensions and wiring diagram for terminals up to max. $2,5 \mathrm{~mm} 2$

DWA-Q2 (design 2) dimensions and wiring diagram with fixed connection cable

Type DWA-Q...-R1 in version with ohmic signal output, passive electrical signal

A centre-tapped potentiometer serves as the measuring element. The change in resistance corresponds linearly to the angle position within the electrical acquisition range. A power supply is not necessary for this. The ohmic signal for the respective acquisition range of the DWA can be converted into a standard $2-10 \mathrm{~V}$ DC signal by means of a signal amplifier (e.g. NORIS SA502-3G) (see following figures).

Diagram of the DWA-Q...-R1 range

| Electrical equivalent wiring diagram of |
| :--- | :--- | :--- |
| the ohmic signal output | | Example: DWA90 signal output, ohm / |
| :--- |
| rotation angle (90 corresponds to 100\% |
| of the rotation angle); depending on the |
| connection, the relationship of resistance |
| /rotation angle is unidirectional to the |
| right/left or in opposite directions. |

Type DWA-Q...-U2, version with analogue voltage output, active electrical signal
A resistive hall-effect sensor with active small-signal amplification serves as the measuring element. The change in voltage at the output corresponds linearly to the angle position within the electrical acquisition range. The characteristic curves of the output signal are crossed. An external power supply is required (see technical data).

Diagram of the DWA-Q...-U2 range
Electrical equivalent diagram of the type
$-U 2$ signal output

Technical data

Common technical data	
Measuring principle	Change in resistance on the voltage divider, hall effect
Rotation angle	360° without mechanical limitation
Vibration resistance	4 g DIN IEC 60068-6 increased stress, characteristic curve 2 (2 ... 100 Hz)
Shock resistance (impact)	$15 \mathrm{~m} / \mathrm{s}^{2}$ at 11 ms dwell time DIN IEC 60068-27
Climatic test	DIN IEC 60068-30
Operating temperature	-40 ... $70^{\circ} \mathrm{C}$
Storage temperature	-40 ... $70^{\circ} \mathrm{C}$ (max. peak values within 30 days/year at relative humidity of 5-95\%)
Humidity	RH max. 96\%
Insulation voltage	1 kV
Protection class	IP66 as per DIN VDE 0470 (IP68 on request)
Electrical connection	Design Q1: Terminals for max. $2.5 \mathrm{~mm}^{2}$, with M20 screw connection as per DIN EN 50262 Design Q2: $4 \times 2 \times 0.33 \mathrm{~mm}^{2}$ fixed connection cables, 3 m in length, M16 screw connection as per DIN EN 50262
Service life	> 5 million revolutions / speed < 400 rpm
Installation position	Any
Approvals	CE, ABS, BV, DNV-GL, MED, KR (in preparation)

Technical data for type-R1 with ohmic resistor connection

Output signal	2 signal outputs: $0 \ldots 2 \mathrm{k} \Omega$
Measuring range	$50^{\circ} \ldots 360^{\circ}$ in 10° steps (linear acquisition angle)
Resolution	∞
Linearity tolerance	$<+/-3 \%$
Load rating	0.28 W per channel $\left(24 \mathrm{~V}\right.$ at $\left.2 \mathrm{k} \Omega @ 40^{\circ} \mathrm{C}\right)$; centre tap max. $1 \mu \mathrm{~A}$

Technical data for type-U2 signal output (analogue voltage output)

Output signal	2 signal outputs: $2 \ldots 10 \mathrm{VDC}$, crossed characteristic curves
Measuring range	$50^{\circ} \ldots 360^{\circ}$ in 10° steps (linear acquisition angle)
Supply voltage	$15 \ldots 30 \mathrm{VDC}$
Current consumption	$<40 \mathrm{~mA}$ per channel
Resolution	12 bit
Linearity tolerance	$<+/-1 \%$
Load rating	$>5 \mathrm{k} \Omega$

Type code

Type code structure				
DWA	90	-Q1		Example: DWA90-Q1-U2
	Rotation angle			
		Design		
		Signal output		
DWA.. type code				
Rotation angle	50	Rotation angle 50°		
	70	Rotation angle 70°		
	90	Rotation angle 90°		
	180	Rotation angle 180°		
	240	Rotation angle 240°		
	320	Rotation angle 320°		
	xxx	Customised rotation angle: $10^{\circ} \ldots 360^{\circ}$ in 10° steps (special type)		
Design		-Q1	$62 \times 62 \times 115 \mathrm{~mm}$ design with terminals and $\varnothing 40 \mathrm{~mm}$ connection pin	
			$62 \times 62 \times 66 \mathrm{~mm}$ design with cable and $\varnothing 30 \mathrm{~mm}$ connection pin	
Output signal		-R1 Dual potentiometer $2 \mathrm{k} \Omega$		
			-U2	$2 \times$ voltage output $2 \ldots 10$
DWA	--		--_	Example: DWA90-Q1-U2

Special types

If our standard types do not correspond with your expectation, we are pleased to develop a special solution together with you.

