

SUPER RODLESS CYLINDER SRL2 SERIES

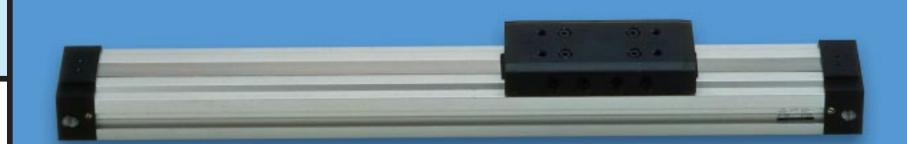
1 Oval Piston Design
Oval Piston Design provides greater load carrying capacity than typical rodless cylinders with round pistons.
This design itself has non- rotating function.

2 Seal belt
In- line sealing realizes ultra adhering.

3 Magnetic Pistons
are standard so that position sensing switches can be added at any time without modifying the cylinder.

4 Super smooth piston packing

for high speed


5 Common port

Two sets of port locations standard. One side port at each end and both ports in one end cap.

6 Guided work table
reduces the deflection caused by radial moment less
than or equal half of standard work table.

12mm through 100mm

8 Low work table position
brought by oval piston design increases resistance to load.

11 Adjustable stroke and shock absorber option available for full cylinder stroke

12 High speed operation, No lubrication required.

Rodless cylinder SRL2 series

●: Standard, ©: Option, ■: Not available

																												otano	<u>ara</u>	<u>, O:</u>	Opti	on,	. IN	ot available
														М	ountii	ng st	yle		Cus	hion						Ор	tion							
Variation	Variation Model No. Bore size (mm) JIS symbol			Stroke length (mm)							Max. stroke length (mm)	Basic type	Axial foot type	Axial foot type	Axial foot type	Both sides cushion	R side cushioned	L side cushioned	No cushion	Adjustable full-stroke both sides shock absorber	Adjustable full-stroke R side shock absorber	Adjustable full-stroke L side shock absorber	Installing adjustable full-stroke bracket later	Floating joint	Thin floating joint	Intermediate support bracket 00/LB	Intermediate support bracket LB1	C mount bracket	Larger size of table set screw	Height adjustment plate	Switch	Page		
			200	300	400	500	600	70	0 80	0 90	00 10	000		00	LB	LB1	LJ	В	R	L	Ν	Α	A1	A2	А3	Υ	Y1	L *	N *	С	Н	U		
	SRL2	12, 16, 20	•	•	•	•	•	•				•	5000	•	•	•		•	•	•	•	0	0	0	0	0	0	0	0	0	0	0		
		25	•	•	•	•	•	•				•	5000	•	•	•		•	•	•	•	0	0	0	0	0	0	0	0	0		0		
Double acting/		32	•	•	•	•	•	•				•	5000	 •	•	•		lacksquare	•	•	•	 ⊚	©	 ⊚		©	 ⊚	 ⊚	©	⊚		.		1
standard type		40, 50, 63	•	•	•	•	•	•			•	•	5000	 •	•			•	•	•	•	 ⊚	 ⊚	©		 ⊚	 ⊚	 ⊚		©		.		
	' '	80, 100	•	•	•	•	•	•			•	•	5000	 •	•			•	•	•	•	 ⊚	 ⊚	©		 ⊚		 ⊚				⊚		
	SRL2-G	12, 16, 20	•	•	•	•	•	•				•	5000	•	•	•		•	•	•	•	0	0	0	0			0	0		0			
		25	•	•	•	•	•	•				•	5000	 •	•	•		•	•	•	•	 ⊚	©	 ⊚	 ⊚			 ⊚	0	• • • • •		○		
Double acting/		32	•	•	•	•	•	•					5000	•	•	•		•	•	•	•	 ⊚	©	0				©	0			0	0	15
resin guide type		40, 50, 63	•	•	•	•	•	•					5000	•	•]	•	•	•	•	 ⊚	©	©				⊚						
		80, 100	•	•	•	•	•	•				•	5000	•	•]	•	•	•	•	©	©	©]			⊚				⊚		
	SRL2-Q	12, 16, 20	•	•	•		•	•				•	5000	•	•	•		•	•	•	•	0	0	0	0	0		0	0		0	0		
Double acting/		25	•	•	•	•	•	•				•	5000	•	•	•		•	•	•	•	0	0	0	0	0		0	0			0		
position locking		32	•	•	•	•	•	•				•	5000	•	•	•		•	•	•	•	0	0	0		0		0	0			⊚ 	0	29
function		40, 50, 63	•	•	•	•	•					•	5000	•	•			•	•	•	•	© 	⊚ 			0		o .			.	0		
		80, 100	•	١ ـ	•	•	•	•			_	_	5000	•	•			•	•	•	•	0	0	0		0		0				0		
Double acting/	SRL2-GQ	12, 16, 20	•	•	•	•	•					•	5000	 •	•				•	•	•		© 					 ⊚ 	© .					
resin guide type		25	•	•	•	•	•					•	5000	 •	•	•		$ \bullet $	•	•	•		(O)		0			 ⊚ 	© .		.			
with position locking		32	•	•	•	•	•	•				•	5000	•	•	•			•	•	•	0	©	©				©	0			0		39
function		40, 50, 63	•	•	•	•	•	•				•	5000	•	•				•	•	•	©	©	©				0				0		
TUTIONOTT		80, 100	•	•	•	•	•	•				•	5000	 •	•			•	•	•	•	0	0	0				0				0		
Double acting/	SRL2-J	25	•	•	•	•	•	•				•	3000	 •			•	•	•	•	•		0	0	0	0		0	0					
full cowling type		32	•	•	•	•	•				•	•	3000	 •					•	•	•			○		⊚ 		 ⊚ 	<u></u>					50
ian sommig type		40, 50, 63	•	•	•	•	•	•				•	3000	•			•	•	•	•	•	0	0	0		0		0						

Safety Precautions

Always read before starting use

When designing and manufacturing a device using CKD products, the manufacturer is obligated to check that device safety mechanism, pneumatic control circuit, or water control circuit and the system operated by electrical control that controls the devices is secured.

It is important to select, use, handle, and maintain the product appropriately to ensure that the CKD product is used safely.

Observe warnings and precautions to ensure device safety.

Check that device safety is ensured, and manufacture a safe device.

WARNING

- This product is designed and manufactured as a general industrial machine part. It must be handled by an operator having sufficient knowledge and experience in handling.
- 2 Use this product in accordance of specifications.

Contact CKD when using the product outside the unique specifications range, when using it outdoors, and when using it under the conditions or environment below. Do not attempt to modify or additionally machine the product.

- Use for special applications requiring safety including nuclear energy, railroad, aviation, ship, vehicle, medical equipment, equipment, or applications coming into contact with beverage or food, amusement equipment, emergency shutoff circuits, press machine, brake circuits, or for safeguard.
- 2 Use for applications where life or assets could be adversely affected, and special safety measures are required.
- 3 Observe corporate standards and regulations, etc., related to the safety of device design and control, etc.

ISO 4414, JIS B 8370 (pneumatic system rules), JIS B 8368 (pneumatic cylinder), JPAS 005 (principles for pneumatic cylinder use and selection), High Pressure Gas Maintenance Laws, Occupational Safety and Sanitation Laws, and other safety regulations, corporate standards, and regulations.

- 4 Do not handle, pipe, or remove devices before confirming safety.
 - Inspect and service the machine and devices after confirming safety of the entire system related to this product.
 - 2 Note that there may be hot or charged sections even after operation is stopped.
 - When inspecting or servicing the device, turn off the energy source (air supply or water supply), and turn off power to the facility. Discharge any compressed air from the system, and pay special attention to possible water leakage and leakage of electricity.
 - When starting or restarting a machine or device that incorporates pneumatic components, make sure that the system safety, such as pop-out prevention measures, is secured.
- 5 Observe warnings and cautions on the pages below to prevent accidents.
- The safety cautions are ranked as "DANGER", "WARNING" and "CAUTION" in this section.

DANGER: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries, or when there is a high degree of emergency to a warning.

(WARNING)

WARNING: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries.

(CAUTION)

A CAUTION: When a dangerous situation may occur if handling is mistaken leading to minor injuries or physical damage.

Note that some items described as "CAUTION" may lead to serious results depending on the situation. In any case, important information that must be observed is explained.

Safety Precautions

Always read before starting use.

▲ WARNING

Design & Selection

1 Use within the product's specified specification range.

Products in this catalog are for use only in a compressed air system. Use with pressure or temperature exceeding the specification range may result in damage or operation faults. (Refer to specifications.) Contact CKD when using for fluids other than compressed air.

2 If cylinder pressure changes due to torsion at the machine's sliding section, etc., the piston rod could pop out.

This could cause bodily injure such as pinching a hand or a foot, or machine damage. Adjust so machine operation is smooth, and design so that bodily injury is avoided.

3 Install a protective cover if bodily injury could occur.

If the cylinder's drive section could cause bodily injury, install a protective cover. Provide a structure that prevents operators entering the cylinder's drive range or direct contact with hazardous sections.

4 Securely couple the cylinder's fixed and coupled sections so that they do not loosen.

When using the cylinder with a particularly high operation frequency or in a place with high vibration, couple sections securely.

5 Cases requiring a deceleration circuit or shock absorber

If the driven object's speed is fast or the weight is large, it may be difficult to absorb impact with the cylinder cushion alone. Take measures to ease impact by installing a deceleration circuit before the cushion or by using an external shock absorber. The machine's rigidity must also be considered.

6 Consider the possibility that circuit pressure may drop during power failure, etc.

When using a cylinder for the clamp mechanism, clamping force may drop and the workpiece deviate if circuit pressure drops during a power failure, etc. Integrate a safety device that prevents bodily injury or machine damage. When using for a suspension device or lift, take measures to prevent dropping.

7 Consider possibilities of faults in power.

For devices controlled with power sources such as pneumatics, hydraulics, or electricity, take measures to prevent bodily injury or machine damage if power fails.

8 Design circuit to prevent popping out.

If the piston is pressed to one side while air in the cylinder is exhausted from another side, such as when driving the cylinder with an exhaust center directional control valve, or when starting after exhausting residual pressure in the circuit, the driven object will pop out at a high speed. Design a circuit to prevent bodily injury such as pinching a hand or a foot, or machine damage.

9 Consider the state of operation at emergency stop.

If the safety device functions and stops the machine when an emergency stop or a system error, such as a power failure, occurs, design the system so that cylinder operation will not cause bodily injury and machine or device damage.

Consider the state of operation at restart after emergency stop or error stop.

Design the system so bodily injury or position deviation will not occur when restarting.

If the cylinder must be reset to the start position, design a safe control unit.

11 Braking

When braking the cylinder's piston with a 3-position closed center directional control valve, air compression may make it difficult to stop accurately as when using low hydraulics. A zero air leak level is not guaranteed for the valve or cylinder, so it may not be possible to hold the stop position for long. Contact CKD when the stop position must be held for a long time.

12 Use clean dry compressed air.

Damage or operation faults could occur if compressed air contains chemicals, synthetic oil containing organic solvents, salt, or corrosive gas, etc.

- Avoid installing this product where it will be exposed to rain, water, direct sunlight, or high humidity.
- 14 Do not use this product in a corrosive environment.

Use in such an environment could lead to damage or operation faults.

Install a cover, etc., when using in a dusty place or where the product could be exposed to water, oil, cutting oil, or coolant.

Use a type with a heavy duty scraper if there are high levels of dust.

Use a coolant proof type if fluid could splatter onto the product.

- 16 If ambient temperature is less than 5°C, moisture in the circuit could freeze and lead to operation faults, etc. Remove moisture to prevent freezing.
- 17 Durability differs with working conditions and model characteristics.

A CAUTION

Design & Selection

1 Do not use in a range where the piston could collide with the stroke limit and break.

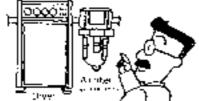
If a piston collides against the cover at the stroke limit and stops due to inertia, use within the range of allowable energy absorption.

2 Install a flow control valve on the cylinder.

Use each cylinder within the applicable piston speed range.

3 Provide intermediate support for a cylinder with long stroke.

If the cylinder has a long stroke, provide an intermediate support to prevent rod damage from rod sagging, tube deflection, vibration, or external loads.


4 Use within the maximum stroke for the corresponding installation.

Refer to Ending 68.

- 5 Install a "pressure switch" and "shut-off valve" on the device's compressed air inlet.
 - The pressure switch will disable operation until set pressure is reached. The shut-off valve will exhaust compressed air in the pneumatic pressure circuit, and will prevent accidents caused by operation of pneumatic components by residual pressure.

- 6 Indicate the maintenance conditions in the device's instruction manual.
 - The product's function can drop markedly with working status, working environment, and maintenance, and can prevent safety from being attained. With correct maintenance, the product functions can be used to the fullest.
- Use dry compressed air that will not form drainage in the pipe.

- Drainage will form if the temperature drops in the pneumatic piping or pneumatic components.
- If the piping volume is larger than the cylinder volume, compressed air in the cylinder will not be completely exhausted when changing with the solenoid valve. This compressed air will condense, formwater drops, and cause drainage.

- Operation faults could occur if drainage enters the air flow path in pneumatic components or if it temporarily blocks passage.
- Drainage could cause rust and lead to pneumatic components faults.
- Drainage will remove lubricant, and cause lubrication faults.
- 8 Extra dry air is not suitable for pneumatic components.
 Use components compatible with ultra dry air.
 - Extra dry compressed air will shorten the life of pneumatic components.
 - Use the solenoid valve for a DC voltage drive.
- 9 Use clean compressed air that does not contain oxidized oil, tar, carbon, etc., from the air compressor.
 - If oxidized oil, tar, or carbon enter the air compressor and solidifies, resistance at the sliding section will increase, and could lead to operation faults.
 - If lubricant mixes in with oxidized oil, tar, carbon, etc., the sliding section of the air compressor could be worn.
- Use compressed air that does not contain solid foreign matter
 - \bullet Foreign matter in compressed air could enter the air compressor and cause wear at the sliding section or hydraulic locking. Install a 5 μm or less air filter.
 - Regularly service and inspect the compressor.
- Avoid operating multiple cylinders synchronously.
 Operation faults could occur if synchronization is not established

and the piston rod twists. If synchronous operation is required, prepare a separate rigid guide.

- A small amount of oil could leak from a packing sliding section or gasket fixing section of the low hydraulic cylinder. Do not use this in a vacuum container or places vulnerable to oil.
- Before installation, confirm that the clevis and trunnion can rotate freely without interfering when the cylinder moves along the full stroke.
- If the load operational direction could change during operation, use a cylinder (clevis, trunnion) that can rotate at an angle. Install the bracket at the end of the rod so that it moves in the same direction as the cylinder.
- This product has been lubricated, and can be used without oiling. If lubrication is required, supply Class 1 turbine oil (no additions) ISO-VG32. If stopped midway, operation faults could occur due to a loss in initial lubricant, so lubricate continuously.

Determine whether a pneumatic device is to be used with oilless or lubricant specifications, and check that the selected method is continuously used.

▲ WARNING

Installation & Adjustment

- 1 Check load and cylinder installation connection for looseness and other abnormalities before starting operation.
- 2 Do not use the device until proper operation is confirmed.

After installation, repair, or modification, connect compressed air or electric power and conduct appropriate functional and leakage inspection to confirm that installation is correct.

- 3 Confirm that there is no machine interference or abnormality in the working system.
- Confirm that there is no abnormality in device operation, and gradually raise and set pressure.
- 5 If the exhaust side is started in the atmospheric state, the rod could pop out creating a hazard. Apply pressure to the cylinder chamber on the exhaust side before starting.

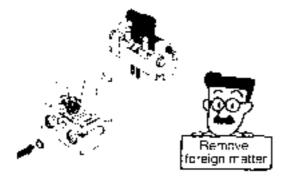
- 6 When adjusting speed with the flow control valve, gradually open the needle. If speed is adjusted in the opened state, the rod could pop out, creating a hazard.
- Adjust the effect of the cushion in the adjustable air cushion, gradually open the cushion needle, and set to match the load.

After adjusting, tighten and fix the needle nut (hexagon nut). Use kinetic energy within the specified range.

The product could be damaged if the specified range is exceeded.

- When driving the cylinder, do not enter or place hands within the cylinder drive range.
- 9 Securely couple cylinder fixed and coupled sections so they do not loosen.

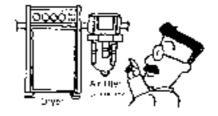
When using a cylinder with a particularly high operation frequency or in a place with high vibration, couple sections securely.


A CAUTION

Installation & Adjustment

- 1 Do not remove the cylinder package or the dustproof port seal on the piping port until just before piping the product.
 - If the dustproof port seal is removed from the piping port before piping work is started, foreign matter could enter the cylinder from the piping port and result in faults or faulty operation.
- When connecting pipes, wrap sealing tape in the opposite direction from threads starting 2 pitches inside from the end of piping threads.
 - If sealing tape protrudes from pipe threads, it could be cut when screwed in. This could cause the tape to enter the solenoid valve and lead to faults.

- Check that the pipe connected to the cylinder will not dislocate due to vibration, loosening, or pulling.
 - Cylinder speed cannot be controlled if pneumatic circuit exhaust piping is dislocated.
 - When a chuck holder is used, the chuck may be released, creating a hazard
- 4 Observe the following precautions when using nylon tubes or urethane tubes for piping material.
 - Use flame resistant or metal pipes where spattering may occur.
 - When using a standard push in joint on the spiral tube, fix the base of the tube with a hose band. The tube could rotate and holding force will drop if not fixed.
- Use corrosion-resistant galvanized pipe, stainless steel pipe, nylon pipe, rubber pipe, etc., for piping material.
- 6 Always flush just before piping pneumatic component.
 - Any foreign matter that has entered during piping must be removed so it does not enter the pneumatic component.



- When supplying compressed air for the first time after connecting pipes, do not apply high pressure suddenly.
 - Piping connection could be dislocated or the piping tube fly off, leading to accidents.
 - Caution: If compressed air is supplied too slowly, sealing pressure may not be generated by the sealing mechanism in the solenoid valve. This can lead to air leaks.
 - The cylinder may operate without warning.
- 8 When supplying compressed air for the first time after connecting pipes, confirm that no air is leaking from any pipe connections.
 - Apply a leakage detection agent on pipe connections with a brush, and check for air leaks.
- 9 Tighten pipes with the appropriate torque.
 - Pipes must be connected with the appropriate torque to prevent air leakages and screw damage
 - First tighten the screw by hand to prevent damage to screw threads, then use a tool.

[Reference values] Refer to instruction manual

Thread size	Tightening torque (N⋅m)
M3	0.3 to 0.6
M5	1 to 1.5
Rc 1/8	3 to 5
Rc 1/4	6 to 8
Rc 3/8	13 to 15
Rc 1/2	16 to 18
Rc 3/4	19 to 40
Rc 1	41 to 70

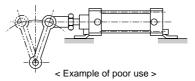
- 10 Provide enough space around the cylinder for installation, removal, wiring and piping.
- Install the air filter just before the circuit using the pneumatic component.
 - Install an air dryer and filter to remove any moisture from piping.
 Install the filter near the directional control valve (primary side) to remove rust, foreign matter and drainage.

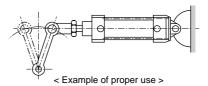
▲ CAUTION

Installation & Adjustment

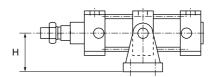
- 12 If the direction that the load moves in is not parallel to the piston rod shaft center, the piston rod and body (tube) could twist and cause the piston rod to pop out. Twisting could also cause burning or breakage. Check that the piston rod's shaft center and the load movement direction are the same.
- To avoid damaging the screw on the end of the piston rod and bushing wear and burning, etc., connect the end of the piston rod and load with a floating joint (spherical bearing) so twisting does not occur at any position in the stroke.
- Protect the load so that it does to drop or fall over when the cylinder is installed or removed.
- **15** Use suspension fittings if the cylinder weighs more than 15 kg.
- 16 Do not bump, scratch, or damage the cylinder tube or piston rod sliding section.

The bore size is manufactured with precise tolerance, and operation faults could occur with even the slightest deformation. Scratches and dents on the piston rod's sliding section will damage the packing and can result in air leakage.


Avoid seizing rotating sections.Apply grease to rotating sections (pins, etc.) to prevent seizing.


18 Read the instruction manual carefully.

Read the instruction manual carefully and fully understand contents before starting use. Keep the instruction manual nearby for easy reference.


- 19 Refer to the instruction manual to prevent incorrect piping to ports, etc.
 - Failure to observe this could lead to operation faults.
- The effect of the air cushion has been adjusted at the factory before shipment.
 - Adjust the cushion needle to adjust the effect of the cushion to match the load. The effect of the cushion will decrease when the needle is loosened (turned counterclockwise).
- When using a cylinder with a long stroke, install support to prevent damage to the rod caused by rod sagging, tube deflection, vibration, or external weight.

The fixed type cylinder should not be coupled with a rotating arm. Use a cylinde installed as possible to rotate.

- If clearance between the clevis or trunnion and mate bearing is large, bending will be applied on the pin or shaft. Do not increase this clearance too much. (Recommended maximum fitting H10/e8)
- If height H from the bearing bracket installation to the bearing position is high in the following drawing, a large force will be generated at the bracket installation section because of cylinder force. This could damage bolts, etc.

When using the double rod cylinder and removing the load, fix the width across the flat section of the piston rod on the load side.

If the load side piston rod is not fixed, the coupling (screwin section) of the piston rod could loosen.

WARNING

During use & Maintenance

1 Follow the instruction manual and carefully conduct maintenance and inspection.

Incorrect handling could result in equipment or device damage, or could result in operation faults.

2 Removal of equipment and supply/exhaust of compressed air

Before removing the device, take measures to prevent the driven object from dropping or running away, and shut off air and power. Exhaust all compressed air in the system before starting. Before restarting, confirm that measures are taken to prevent popping out, and restart carefully.

- 3 Disassemble the cylinder after removing it from the device.
- 4 Qualified personnel must conduct the disassembly and assembly work.


- After disassembling and reassembling the product, conduct leakage and operation inspection before reassembling it on the device.
- If personnel initiates smoking with fluorine-based grease from the cylinder (heat resistant, low speed, low friction, P7, etc.) on hands, toxic gases that could cause bodily injury will be generated.
- 6 Note that when disassembling a single acting cylinder, the spring could cause parts to pop out.
- 7 Frictional resistance increases and causes the piston speed to change when the cylinder has been stopped for a long time, such as when using first thing in the morning or afternoon. This may impair stoppage accuracy. Conduct break-in operation to obtain stable stoppage accuracy.
- 3 Use appropriate pliers (snap ring installation tool) to install and remove rod bushings.
- Even when appropriate pliers (snap ring installation tool) are used, the snap ring could be dislocated from the end of pliers (snap ring installation tool) and cause bodily injury or damage to peripheral devices.

When installing the snap ring, check that it securely fits into the snap ring groove before supplying air.

⚠ CAUTION

During use & Maintenance

- 1 Plan daily inspections and periodic inspections to ensure that maintenance is correctly controlled.
 - If maintenance is not correctly controlled, the product's functions could drop markedly and lead to a shortened life, damage, malfunctions, faults, and accidents.
 - 1) Control of supplied compressed air pressure
 - Is the set pressure supplied? Does the pressure gauge indicate the set pressure during operation of the device?

- 2) Control of pneumatics filter
- Is the drain correctly discharged?
- Is the bowl or element dirty?
- 3) Control of compressed air leaks from piping connections
- Is the state of the connection, especially at movable sections, normal?
- 4) Control of solenoid valve's operation
- Are any operations delayed? Is exhaust normal?
- 5) Control of pneumatic actuator operation
- Is operation smooth? Is end stop normal? Is coupling with the load normal?

- 6) Control of lubricator
- Is the oil rate correctly adjusted?
- 7) Control of lubricant
- Is the regular lubricant supplied?
- 2 Do not use if air leakage increases or the device does not operate correctly.
 - After installation, repair, or modification, connect compressed air and electricity, and conduct functional and leakage inspection to confirm that installation is correct.
- 3 If the product has been out of use for a long time, check that operation is correct before restarting.
- 4 Replace consumables that have reached their rated life during periodic inspection.

Do not use consumables stored for 5 or more years.

- 5 Store consumables in a dark cool place away from direct sunlight.
- Take measures to prevent the load from dropping or falling over before removing the cylinder.
- When conducting maintenance, such as replacing consumables, etc., conduct disassembly and assembly at a test bench, etc., in a clean atmosphere with no dust. Conduct a functional inspection to confirm that the device operates correctly.

Cylinder switch

WARNING

Design & Selection

1 Application, load current, voltage, temperature, impact, environment, etc., exceeding the specifications will result in damage or operation faults. Use the device as instructed in specifications.

2 Do not use this product in flammable environments. The cylinder switch is not explosion proof, and such use could result in explosions or damage.

A CAUTION

Design & Selection

1 Check the proximity of cylinders.

When installing more than 1 cylinder with switches in parallel, keep enough distance between cylinder tubes according to the cylinder specifications.

Mgnetic interference of these cylinders may occur and cause the switch to malfunction.

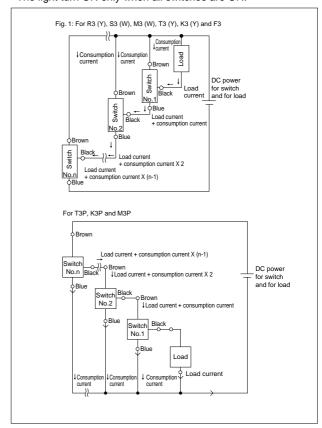
2 Check the magnetic environment

 If surroundings contain a strong magnetic field or large current (large magnet, spot welding machine, etc.), use a strong magnetic field proof switch. (HO, HOY, T2YD) When installing the cylinder with switch nearby in parallel, or if a magnetic object is very close to the cylinder, mutual interference may occur and adversely affect detection accuracy.

3 Check the cylinder switch ON time at mid-stroke.

 When setting the cylinder switch at mid-stroke and driving a load when the piston changes, if the speed is too fast, the cylinder switch will function but operation time will be too short and the load may not respond correctly.

The maximum detectable piston speed is:


$$V(mm/s) = \frac{Cylinder\ switch\ operation\ range\ (mm)}{Load\ operation\ time\ (s)}$$

If the piston speed is too fast, use an off delay output cylinder switch (T2JH/V) (models are limited).

4 Check internal voltage drops caused by serial connections.

- When connecting several 2-wire type switches in serial, the switch
 voltage drop is the total voltage drop of all connected switches.
 The voltage applied to the load is the voltage obtained by
 subtracting the voltage drop at switches from the power voltage.
 Check load specifications and determine the number of switches
 to be connected.
- When connecting several 3-wire serial proximity switches, the switch's voltage drop is the total voltage drop of all connected switches, as with the 2-wire switch. The current that flows to the switch is the total of the connected switch's current consumption and load current, as shown at upper right. Check load specifications and determine the number of switches to be connected so that the maximum switch load current is not exceeded.

• The light turn ON only when all switches are ON.

5 Check the leakage current caused by parallel connections

- When connecting several 2-wire switches in parallel, note that leakage current increases in proportion to the number of connected units.
 Check load specifications and determine the number of switches to be connected. Note that switch light could dim or may not turn ON.
- With the 2-wire proximity switch, when 1 switch is changing from ON to OFF status, voltage at both ends of the switch connected in parallel drops to the internal voltage drop value at switch ON and is less than the load voltage range and other switches will not turn ON.
 Check input specifications of the programmable controller, which is the connection load, before starting use.
- The 3-wire proximity switch has an extremely small leakage current (10 µA or less), so there is no problem in use under normal conditions.

Pneumatic Components

Safety Precautions

Always read before starting use

Refer to Intro 3 for general details on the cylinder, and to Intro 8 for details on the cylinder switch.

Rodless cylinder SRL2 Series

▲ CAUTION

Design & Selection

cylinder (SRL2-J).

1 Take care when designing the braking control circuit.

With a slit rodless cylinder such as the SRL2, some air leaks due to the structure, so braking cannot be controlled with the all ports closed 3-position valve, and it may not be possible to hold the table stop position. Use a double-sided pressurized control circuit having a PAB connection 3-position valve.

If air pressure drops once and is then pressurized again deenergized, the table may move and the origin deviate.

2 Basic circuit diagram

For horizontal load

If piping is as shown in Fig. 1, equal pressure is applied on both sides of the piston when stopped, and the table does not pop out when restarting.

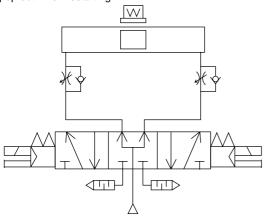
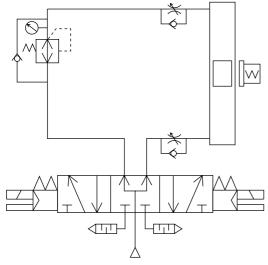
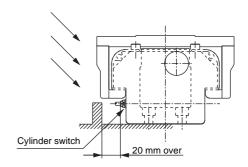


Fig. 1

· For vertical load

If a vertical load is moved as shown in Fig. 2, the table moves in the direction of the load. Install a regulator with a check valve to reduce thrust in the load direction and balance the load.



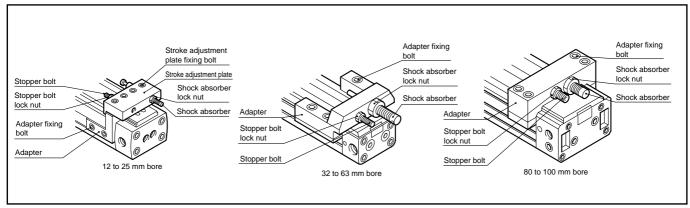

Fig. 2

- 3 The cylinder cannot be used where welding spatter, etc., may contact it. Use a full cowling rodless
- 4 Precautions for full cowling (SRL2-J)

When installing a wall to keep dirt or coolant away from the device, be sure the wall is nonmagnetic (aluminum, brass, etc.).

For a magnetic material (steel plate, etc.), separate the wall at least 20 mm from the switch edge.

(Same clearance for all diameters)


5 With a slit-rodless cylinder, such as the SRL2, air leaks but does not affect speed control.

Installation & Adjustment

1 Adjusting the stroke adjustment unit

1. SRL2 Series

(1) Moving the stroke adjustment unit

The stroke adjustment unit is moved by loosening the adapter fixing bolt (adapter fixing bolt and stroke adjustment plate fixing bolt for 12 to 25 mm bore).

(2) Fixing the stroke adjustment unit

After moving the stroke adjustment unit to the required position, tighten and fix the adapter fixing bolt (adapter fixing bolt and stroke adjustment plate fixing bolt for 12 to 25 mm bore) using values in Table 8. If tightened at a lower value, the stroke adjustment unit may deviate.

Table 8 Tightening torque for adapter fixing bolt and stroke adjustment plate fixing bolt

Tightening torque Model	Adapter fixing bolt (N.cm)	Stroke adjustment plate fixing bolt (N⋅cm)
SRL2-12/16	100 to 120	50 to 70
SRL2-20	250 to 270	50 to 70
SRL2-25	520 to 560	250 to 270
SRL2-32	2200 to 2400	-
SRL2-40	4400 to 4800	-
SRL2-50/63	7700 to 8300	-
SRL2-80/100	10000 to 11000	-

(3) Adjusting the stroke with a stopper bolt

With 12 to 20 mm bore, clearance between the table and stroke adjustment plate is small, and fingers may be pinched during adjustment. The stroke must basically be adjusted by moving the stroke adjustment unit.

Loosen the stopper bolt lock nut, turn the stopper bolt, and adjust the stroke.

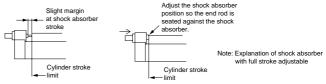
After adjusting the stroke, tighten and fix the stopper bolt lock nut using values in Table 9.

(4) Adjusting the shock absorber

Shock absorber absorbed energy is adjusted by changing the working stroke of the shock absorber.

Adjust the shock absorber working stroke by loosening the shock absorber lock nut and turning the shock absorber. After adjustment, tighten and fix the shock absorber lock nut using values in Table 9.

Table 9 Tightening torque for stopper bolt lock nut and shock absorber lock nut


Tightening torque Model	Stopper bolt lock nut (N·cm)	Shock absorber lock nut (N.cm)
SRL2-12/16	110 to 120	130 to 180
SRL2-20	250 to 270	290 to 390
SRL2-25	880 to 950	450 to 600
SRL2-32	2200 to 2400	750 to 1000
SRL2-40	4400 to 4800	2200 to 3000
SRL2-50	7700 to 8300	5500 to 7000
SRL2-63	20000 to 21600	5500 to 7000
SRL2-80/100	21500 to 23500	10000 to 13000

(5) Precautions for use

shock absorber is used.

• The shock absorber absorbs rated energy with the rated stroke. When the product is shipped, the shock absorber is installed with a slight margin to the stroke at the cylinder stroke limit.

Absorbed energy is smaller than allowable energy absorption for the individual shock absorber (refer to Table 10), so if rated absorbed energy is required, adjust so the full stroke for the

 Allowable energy absorption differs with collision speed, so if collision speed is 2000 mm/s, check that one-third of the maximum energy absorption in Table 11 is not exceeded. If collision speed is 1000 mm/s, check that one-half of the maximum energy absorption is not exceeded.

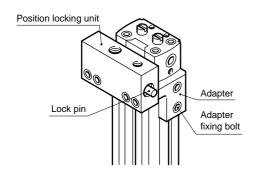
Table 10 Full stroke adjustable shock absorber specifications (defaults)

Туре	Absorbed energy (J)	Effective stroke (mm)
SRL2-12/16	2.4	5.5
SRL2-20	5.7	7
SRL2-25	10	9
SRL2-32	18	13
SRL2-40	50	16.5
SRL2-50/63	86	21
SRL2-80/100	143	25

Pneumatic Components

Safety Precautions

Always read before starting use

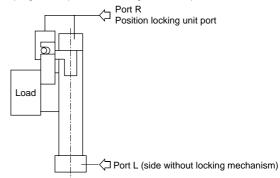

Refer to Intro 3 for general details on the cylinder, and to Intro 10 for details on the cylinder switch.

Rodless cylinder SRL2 Series

Installation & Adjustment

2. SRL2-Q Series (with position locking)

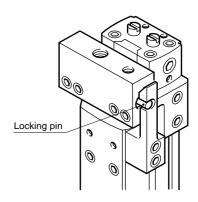
 The positioning locking unit is moved by loosening the adapter fixing bolt.


Use the type with a shock absorber (A, A1, A2). If the stroke is finely adjusted with the shock absorber, the position locking unit deviates and the position cannot be completely locked. Finely adjust stroke with the adapter fixing bolt.

 After moving to the required position, tighten and fix the adapter fixing bolt using the values below. The position locking unit may deviate if the bolt is not tightened to these values.

Model	Tightening torque for adapter fixing bolt (N⋅cm)
SRL2-Q-12/16	100 to 120
SRL2-Q-20	250 to 280
SRL2-Q-25	520 to 560
SRL2-Q-32	2200 to 2400
SRL2-Q-40	4400 to 4800
SRL2-Q-50/63	7700 to 8300
SRL2-Q-80/100	10000 to 11000

Precautions for cylinder with position locking (SRL2-Q) (Piping)


• Piping to the position locking unit is required.

 Branch piping to the rodless cylinder R side using a tee union, etc., and pipe to the position locking unit with similar piping.

(Manual release)

Release the position locking pin with a rod-shaped object.
 Supply pressure to port L to check that load is not applied to the locking mechanism before releasing the lock.
 If both ports R and L are exhausted and pressure is supplied to port R while the piston is locked, the lock is released and the table may suddenly move, creating a hazard.

(Valve)

- If the cylinder is held while pressure is applied on the locking mechanism, the locking pin may dislocate and create a very hazard. Do not use a 3-position closed center or PAB connection valve.
- If back pressure is applied while locked, the lock may be released. Use a discrete valve, or use an individual exhaust manifold.
- If dropping speed is increased with a quick exhaust valve, the cylinder may move faster than the locking pin and prevent proper release.

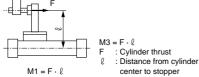
Use a separate valve for controlling the position locking section, etc., to provide correct timing.

A CAUTION

Installation & Adjustment

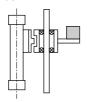
1 Avoid electric welding after installing the rodless cylinder.

If the current flows into the cylinder and generates sparks between the dust-proof belt and cylinder tube, the dust-proof belt may be damaged.

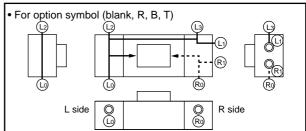

- 2 If a unit with excessive inertia, etc., is moved, the cylinder may be damaged or faulty operation occur. Use only within the allowable range.
- 3 Do not apply strong impact or excessive moment to the table.
- 4 When connecting to a load with external guide mechanism, align the center carefully.
 - The longer the stroke, the greater the shaft center may deviate. Carefully consider connection (floating) so deviation is absorbed.
- 5 Check that moment, including inertia generated when moving or stopping the load, does not exceed the allowable load, or damage may result.

(Overhang is large)

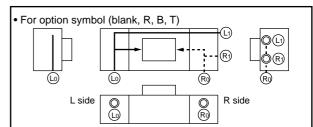
If overhang is large and the cylinder is stopped at both ends
with the piston, the bending moment functions due to load
inertia even within internal cushion energy absorption.
 If kinetic energy is large and an external cushion, etc., is used,
try contact with the workpiece center of gravity when possible.


(Using an external stopper)

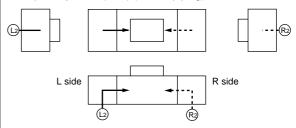
- When selecting an external stopper, consider the bending moment generated by cylinder thrust.
- Moment that functions when stopping with external stopper


(Using an external guide)

- When an external guide is installed, if the center is not aligned, movement is not smooth and resistance caused by twisting functions as moment. Configure connection so misalignment is absorbed.
- Example of using guide


6 Piping port direction and operating direction

Tube bore of 12 to 20 mm


(R) indicates the R side pressure port, and (L) indicates the L side pressure port. Before shipping, all plugs other than 1 each at (R) and (L) are sealed with plugs. Pipes are connected to other ports by removing plugs. Option symbols (D, S) cannot be manufactured.

Tube bore of 25 to 63 mm

(R) indicates the R side pressure port, and (L) indicates the L side pressure port. Before shipping, all plugs other than 1 each at (R) and (L) are sealed with plugs. Pipes are connected to other ports by removing plugs. Note that pipes cannot be connected to the bottom. Select options (D, S) if such connection is necessary.

• For option symbols (D, S) (bottom piping)

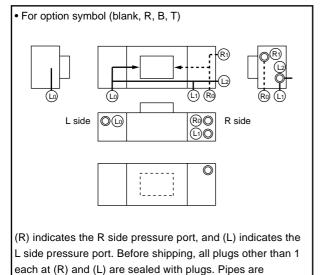
(R) indicates the R side pressure port, and (L) indicates the L side pressure port. There are no ports other than (R2) or (L2), so pipes cannot be connected.

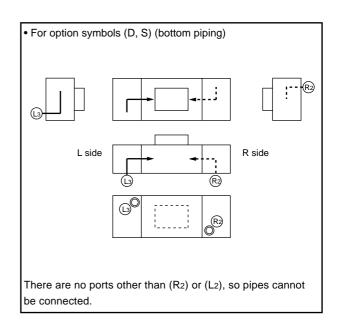
Pneumatic Components

Safety Precautions

Always read before starting use

Refer to Intro 3 for general details on the cylinder, and to Intro 10 for details on the cylinder


Rodless cylinder SRL2 Series

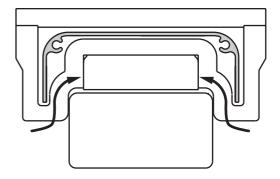


CAUTION

Installation & Adjustment

Tube bore of 80 to 100 mm

A CAUTION


During use & maintenance

1 Precautions for full cowling (SRL2-J)

connected to other ports by removing plugs.

- · Suspended particles such as fiber, feathers, or powder may pass through the table adapter passage under the cover and adhere to the cylinder, leading to operation faults.
- If coolant (oil) or cutting chips scatter with force, or if they scatter from an inclined direction, provide another cover on the cylinder and sides, etc.
- Clearance of 2 to 3 mm exists between the movable part (table adapter) and cover. If dirt scatters, it may enter clearance.
- Avoid installing the SRL2-J in reverse. Dirt may accumulate or operation be inhibited by accumulated fluid.

- Regularly remove all dirt from the top and inside of the cover. Failure to do so may lead to operation faults.
- This product provides clearance under the cover for passing the table adapter through. Note that dirt may enter the cover.

<The drawing shows the entry passage.>

MEMO

Rodless cylinder, double acting

SRL2 Series

• Bore size:

12, 16, 20, 25, 32 mm bore 40, 50, 63, 80, 100 mm bore

JIS symbol

CAD DATA AVAILABLE.

Specifications

Descriptions				S	RL2									
Bore size mm	12 dia. 16 dia	20 dia.	25 dia.	32 dia.	40 dia.	50 dia.	63 dia.	80 dia.	100 dia.					
Actuation		Double acting												
Working fluid		Compressed air												
Max. working pressure MPa		0.7												
Min. working pressure (Note 2) MPa	0.2	0.2 0.1 0.05												
Withstanding pressure MPa				1.0	05									
Ambient temperature °C				5 tc	60									
Port size	M5	Ro	1/8	Ro		Ro	3/8	Ro	1/2					
Stroke length tolerance mm	+2	0 (to 100	0)	^{+2.5} (to	3000)	^{+3.0} (t	o 5000)							
Working piston speed mm/s		50 to	2000 (s	tandard	port pip	oing) (N	ote 1)							
Cushion		Air cushion												
Lubrication	Not required (turk	Not required (turbine oil Class 1 ISOVG32 should be used. Continue to lubricate once lubricated.)												

Note 1: Working piston speed, when using with common port piping, may vary depending on stroke length. Consult with CKD.

Note 2: For low pressure specifications "LP" (12 to 20 mm bore), 0.1MPa.

Allowable energy absorption

Bore size	Cush	ioned	No cushion	With shock absorber (initial set value						
(mm)	Allowable energy absorption (J)	Cushion stroke length (mm)	Allowable energy absorption (J)	Absorbed energy (J)	Effective stroke length (mm)					
12 dia.	0.03	14.5	0.003	2.4	5.5					
16 dia.	0.22	19.2	0.007	2.4	5.5					
20 dia.	0.59	22.2	0.010	5.7	7					
25 dia.	1.40	20.9	0.015	10	9					
32 dia.	2.57	23.5	0.030	18	13					
40 dia.	4.27	23.9	0.050	50	16.5					
50 dia.	9.13	24.9	0.072	86	21					
63 dia.	17.4	29.6	0.138	86	21					
80 dia.	40	45.8	0.393	143	25					
100 dia.	67	45.8	0.622	143	25					

Stroke length

Bore size (mm)	Standard stroke length (mm)	Max. stroke length (mm)	Min. stroke length (mm)
12 dia.			
16 dia.			The value may
20 dia.	200, 300		vary depending on
25 dia.	400, 500		switch model No.
32 dia.	600, 700	5000	and installation
40 dia.	800, 900	0000	quantity.
50 dia.	1000		(Refer to the
63 dia.	1000		below table about
80 dia.			details.)
100 dia.			

• Custom stroke length is available per 1 mm increment.

M type switch installation quantity and minimum stroke length (mm)

W type ewiter metallation qualitity and minimum etroite length (min)																		
Switch quantity		1		2		3		4	5	5	6		-	7	8	}	9	9
Switch model No. Bore size (mm)	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H
12 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
16 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
20 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
25 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
32 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
40 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
50 dia.	15	15	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
63 dia.	15	15	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
80 dia.	25		50		100		150		200		250		300		350		40	00
100 dia.	25		50		100		150		200		250		300		350		400	

T type switch installation quantity and minimum stroke length (mm)

· type emiter meta		7. 90		• ,				7. O		. 9	<u>, , , , , , , , , , , , , , , , , , , </u>	,						
Switch quantity		1	2	2	[;	3	4	4	5	5	•	3		7	{	3	9	9
Switch model No. Bore size (mm)	T * Y * V	T*Y*H	T*Y*V	T*Y*H	T * Y * V	T*Y*H	T*Y*V	T*Y*H	T * Y * V	T*Y*H	T*Y*V	T*Y*H	T*Y*V	T*Y*H	T*Y*V	T*Y*H	T * Y * V	T*Y*H
12 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
16 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
20 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
25 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
32 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
40 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
50 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
63 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
80 dia.	15	15	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
100 dia.	15	15	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400

Switch specifications • One color/bi-color indicator

	Proximi	ty 2 wire	Proximity 3 wire			
Descriptions	M2V, M2H M2WV (2 color indicator)		M3V, M3H	M3WV (2 color indicator)		
Applications	Programma	ble controller	Programmable controller, relay	, IC circuit, small solenoid valve		
Power voltage		-	DC4.5 to 28V	DC10 to 28V		
Load voltage	DC10	to 30V	DC30V or less	DC30V or less		
Load current	5 to 3	30mA	200mA or less	150mA or less		
Light	LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Red/green LED (ON lighting)		
Descriptions			Reed 2 wire			
Descriptions	MOV	, M0H	M5V, M5H			
Applications	Programmable	controller, relay	Programmable controller, relay, IC circuit (without indicator light), serial connection			
Power voltage		-	-			
Load voltage	DC12/24V	AC110V	DC5/12/24V	AC110V or less		
Load current	5 to 50mA	7 to 20mA	50mA or less	20mA or less		
Light	LED (ON	lighting)	Without indicator light			

Note 1: For MO * switch, if load current range is within 7 to 20mA, this switch can be used with AC24V and AC48V.

• With preventive maintenance output

* * 1	That provonere maintenance earpar										
Descriptions		Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire						
Desi	сприонъ	T2YF H/V	T3YF H/V	T2YM H/V	T3YM H/V						
Applications		Programmable controller	Programmable controller, relay	Programmable controller	Programmable controller, relay						
Light	Installation position adjustment		Red/green LEI	O (ON lighting)							
Lig	Preventive maintenance output		-	Yellow LED (ON lighting)							
	Power voltage	-	DC10 to 28V	-	DC10 to 28V						
	Load voltage	DC10 to 30V	DC30V	DC10 to 30V	DC30V or less						
Output	Load current	DC5 to 20mA	DC50mA or less	DC5 to 20mA	DC50mA or less						
ont	Internal voltage drop	4V or less	0.5V or less	4V or less	0.5V or less						
	Current consumption	-	10mA or less	-	10mA or less						
	Leakage current	1mA or less	10 micron A or less	1.2mA or less	10 micron A or less						
nc	Load voltage		DC30V	/ or less							
/e output	Load current	DC20mA or less	DC50mA or less	DC5 to 20mA	DC50mA or less						
	Internal voltage drop	0.5V	or less	4V or less	2.4V or less						
Preventive itenance ou	Leakage current		10 micron	n A or less							
Preventi maintenance	Signal holding (Ton)	-	-	0.4 ±0.2sec after installation position adjustment red LED turned on.							
ша	Signal release (Toff)	-	-	0.7 ±0.2sec after installation position adjustment red LED turned on.							

Strong magnetic field

Descriptions	Proximity switch					
Descriptions	T2YD					
Applications	Programmable controller					
Light	Red/green LED (ON lighting)					
Load voltage	DC24V ±10%					
Load current	5 to 20mA					
Internal voltage drop	6V or less					
Leakage current	1.0mA or less					

Cylinder mass

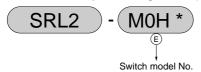
Jnit: kg

Cylinder mass					Unit: kg	
	Mass v	Additional				
Bore size (mm)	Basic type	Foot	type	Mass per switch	mass per	
	(00)	(LB) (LB1)		(including bracket.)	St = 100mm	
12 dia.	0.24	0.25	0.26		0.10	
16 dia.	0.32	0.33	0.35		0.13	
20 dia.	0.52	0.54	0.58		0.18	
25 dia.	1.0	1.1	1.1		0.30	
32 dia.	1.5	1.6	1.7	0.02	0.39	
40 dia.	2.4	2.5	-	0.02	0.56	
50 dia.	3.6	3.7	-		0.78	
63 dia.	6.2	6.5	-		1.17	
80 dia.	18.4	19.0	-		2.32	
100 dia.	26.2	27.2	-		3.38	

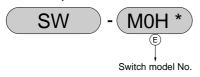
© Option

: Port position F, cushion needle position B

Op	Optional combination table •: Combination available : Combination not available																			
						· ·		50111			tion			. 00	JIIID	mati	OIII	iot d	vane	
		Adjustable full-stroke both ends with shock absorbers	Adjustable full-stroke R end only, with shock absorber	Adjustable full-stroke L end only, with shock absorber	Adjustable full-stroke bracket later installation	■ ← Floating joint	Thin type floating joint	Intermediate support bracket (for 00, LB)	Z Intermediate support bracket (LB1)	C mount bracket	Select larger size of table set screw	Height adjustment plate	Low pressure specifications	Port position F, cushion needle position F (standard)	Port position R, cushion needle position F (common port)	Port position F, cushion needle position B	Port position R, cushion needle position B (common port)	Port position D, cushion needle position F	Port position D, cushion needle position D	lacktriangle $lacktriangle$ $lacktriangl$
	Symbol	A A	⋖ A1	∢ A2	⋖ A3	∀ >	⊢ Y1	上 L*	<u>-</u>	C	S H	U	L LP	a. Blank	Б	<u>a</u> B	T	D	S	Δ. Y
	A	$\overline{}$	Λ1	72	73	•		•	•		•	•		Dialik	R	•	•		•	
	A1	$\overline{}$				•	•	•	•		•	•	•	•	•	•	•	•	•	
	A2					•	•	•	•		•	•	•	•	•	•	•	•	•	•
	A3					•	•	•	•		•	•	•	•	•	•	•	•	•	
	A3 Y							•	•				•	•	•	•	•	•	•	
	Y1					,	\setminus	•	•				•	•	•	•	•	•	•	
	L*										•	•	•	•	•	•	•	•	•	
	N *										lacksquare	•	•	lacksquare	•	•	•	•	•	
Option	С											•	•	lacksquare	•	•	•	•	•	
Ob	Н												•		•	•	•	•	•	
	U												lacksquare	•	•	•	•	•	•	
	LP														•		•	•	•	
	Blank																			
	R																			
	В																			
	Т																ightharpoons			
	D																			
	S																			
	Χ																			\square


Note 1: Some combination is impossible depending on bore size. Confirm the conditions of options of "how to order" **6** on the previous page. Note 2: When port position D, LB1 is not available. (25, 32 mm bore)

SRL2 Series


How to order switch

(Please refer to Page Ending 9 to 11 about components.)

• Switch main body + mounting bracket (Note 1)

· Switch only

* Lead wire length							
Blank	1m (standard)						
3	3m (option)						
5	5m (option)						


^{*} mark indicates lead wire length.

• Mounting bracket (Note 2)

M type switch

• T type switch

• Lead wire holder (Note 3)

Note 1. Switch main body + mounting bracket set doesn't include any lead wire holder. When a lead wire holder is necessary, place an order separately.

Note 2. M type switch bracket is different from T type switch.

Note 3: Lead wire holder is 10 pieces/set.

• How to order discrete shock absorber

(One shock absorber, one shock absorber fixing hex. nut)

(Note) Shock absorber fixing hex. nut for SRL2- 40 is a custom part.

Applicable shock absorber model No.

Model	Shock absorber model No.
SRL2-12	NCK-0.3-C
SRL2-16	NCK-0.3-C
SRL2-20	NCK-0.7-C
SRL2-25	NCK-1.2
SRL2-32	NCK-2.6
SRL2-40	NCK-7
SRL2-50	NCK-12
SRL2-63	NCK-12
SRL2-80	NCK-20
SRL2-100	NCK-20

• How to order discrete C mount bracket (for 12 to 63 mm bore)

(C mount bracket, 4 mounting bolts)

• How to order floating joint set

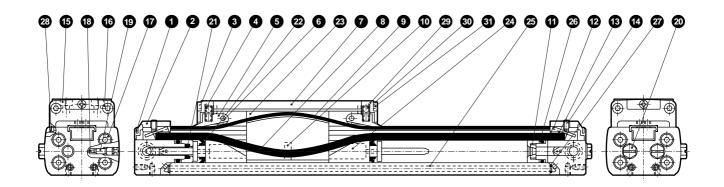
(Mount, mount base, pin, plain washer, pan head machine screw 4 mounting bolts with spring washer)

• How to order discrete intermediate support bracket LB

• How to order adjustable full-stroke kit

• How to order repair parts

• How to order mounting bracket


(Two brackets, 4 mounting bolts)

• How to order height adjustment plate set

(Plate, 4 mounting bolts)

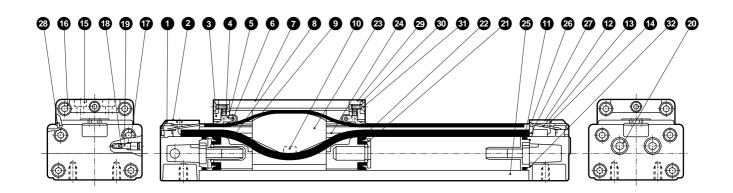
Internal structure and parts list

• 12 to 40 mm bore

Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Belt cover	Polyamide		17	Hexagon socket head cap screw	Steel	Blackening
2	Cover (L)	Aluminum alloy	Seizure painting	18	Needle gasket	Nitrile rubber	
3	Table cover	Acetar resin		19	Cushion needle	Steel	Galvanizing
4	Spring	Steel	Blackening	20	Plug	Brass or steel	
5	Belt tension	Acetar resin		21	Cushion packing seal	Urethane rubber	
6	Parallel pin	Steel		22	Piston packing seal	Nitrile rubber	
7	Table	Aluminum alloy	Black alumite	23	Yoke	Aluminum alloy	Alumite
8	Seal belt	Urethane rubber		24	Piston	Acetar resin	
9	Dust-proof belt	Stainless steel + nitrile rubber		25	Cylinder tube	Aluminum alloy	Alumite
10	Magnet	Special alloy		26	Cylinder gasket	Nitrile rubber	
11	Cushion adaptor	Acetar resin		27	Common port, O ring	Nitrile rubber	
12	Cover (R)	Aluminum alloy	Seizure painting	28	Dust wiper	Acetar resin	
13	Belt spacer	Steel	Galvanizing	29	2-side adhesive tape		
14	Hexagon socket head set screw	Steel	Blackening	20	Plate	Stainless steel (12 to 20 dia.)	
15	Hexagon socket head cap screw	Steel	Blackening	30		Steel (25 to 40 dia.)	
16	Hexagon socket head cap screw	Steel	Blackening	31	Cross headed tapping screw	Stainless steel	

Repair parts list


Bore size (mm)	Kit number	Repair parts number
12 dia.	SRL2-12K- *	
16 dia.	SRL2-16K- *	
20 dia.	SRL2-20K- *	0 0 0 0
25 dia.	SRL2-25K- *	29 29 29
32 dia.	SRL2-32K- *	
40 dia.	SRL2-40K- *	

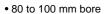
Note: When placing an order, indicate kit number. Indicate stroke length at *.

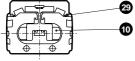
SRL2 Series

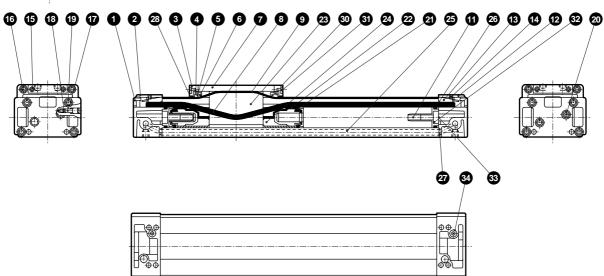
Internal structure and parts list

• Equivalent to 50 to 63 mm

Parts list


No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Belt cover	Polyamide		17	Hexagon socket head cap screw	Steel	Blackening
2	Cover (L)	Aluminum alloy	Seizure painting	18	Needle gasket	Nitrile rubber	
3	Table cover	Acetar resin		19	Cushion needle	Steel	Galvanizing
4	Spring	Steel	Blackening	20	Plug	Steel	
5	Belt tension	Acetar resin		21	Cushion packing seal	Urethane rubber	
6	Parallel pin	Steel		22	Piston packing seal	Nitrile rubber	
7	Table	Aluminum alloy	Black alumite	23	Yoke	Aluminum alloy	Alumite
8	Seal belt	Urethane rubber		24	Piston	Acetar resin	
9	Dust-proof belt	Stainless steel + nitrile rubber		25	Cylinder tube	Aluminum alloy	Alumite
10	Magnet	Special alloy		26	Cylinder gasket	Nitrile rubber	
11	Cushion ring	Acetar resin		27	Common port, O ring	Nitrile rubber	
12	Cover (R)	Aluminum alloy	Seizure painting	28	Dust wiper	Acetar resin	
13	Belt spacer	Steel	Galvanizing	29	2-side adhesive tape		
14	Hexagon socket head set screw	Steel	Blackening	30	Plate	Steel	Galvanizing
15	Hexagon socket head cap screw	Steel	Blackening	31	Cross headed tapping screw	Stainless steel	
16	Hexagon socket head cap screw	Steel	Blackening	32	Cushion ring gasket	Nitrile rubber	


Repair parts list


Bore size (mm)	Kit number	Repair parts number				
50 dia.	SRL2-50K- *	8	9	4	2	
63 dia.	SRL2-63K- *	20	7	2 3	3	

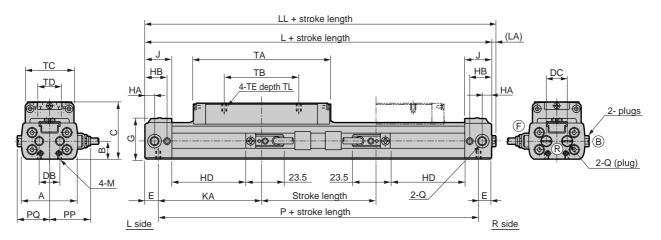
Note: When placing an order, indicate the kit number, and indicate stroke length at * .

Internal structure and parts list

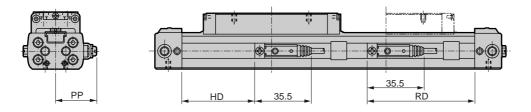
Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Belt cover	Polyamide		18	Needle gasket	Nitrile rubber	
2	Cover (L)	Aluminum alloy	Seizure painting	19	Cushion needle	Steel	Galvanizing
3	Table cover	Acetar resin		20	Plug	Steel	
4	Spring	Steel	Blackening	21	Cushion packing seal	Urethane rubber	
5	Belt tension	Acetar resin		22	Piston packing seal	Nitrile rubber	
6	Parallel pin	Steel		23	Yoke	Aluminum alloy	Alumite
7	Table	Aluminum alloy	Black alumite	24	Piston	Acetar resin	
8	Seal belt	Urethane rubber		25	Cylinder tube	Aluminum alloy	Alumite
9	Dust-proof belt	Stainless steel + nitrile rubber		26	Cylinder gasket	Nitrile rubber	
10	Magnet	Special alloy		27	Common port, O ring	Nitrile rubber	
11	Cushion ring	Acetar resin		28	Felt (1)	Wool	
12	Cover (R)	Aluminum alloy	Seizure painting	29	Felt (2)	Wool	
13	Belt spacer	Steel	Galvanizing	30	Plate	Steel	Galvanizing
14	Hexagon socket head set screw	Steel	Blackening	31	Cross headed tapping screw	Stainless steel	
15	Hexagon socket head cap screw	Steel	Blackening	32	Cushion ring gasket (1)	Nitrile rubber	
16	Hexagon socket head cap screw	Steel	Blackening	33	Cushion ring gasket (2)	Nitrile rubber	
17	Hexagon socket head cap screw	Steel	Blackening	34	Plug	Steel	

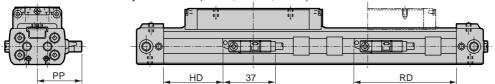
Repair parts list

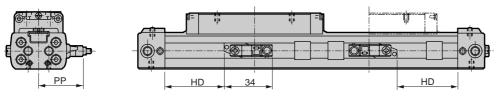

Bore size (mm)	Kit number	Repair parts number
80 dia.	SRL2-80K- *	8 9 9
100 dia.	SRL2-100K- *	29 26

Bore size (mm)	Kit number	Repair parts number
80 dia.	SRL2-80K- *	49 49 49
100 dia.	SRL2-100K- *	39 33


Note: When placing an order, indicate the kit number, and indicate stroke length at $^{\star}. \\$

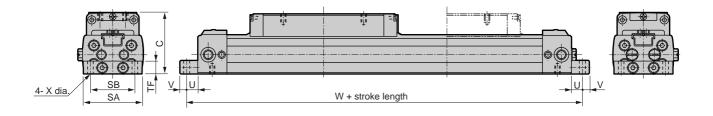
Dimensions (12 to 20 mm bore)

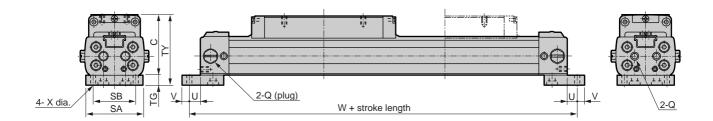

• SRL2- ** - ** - *** - M * V * with cylinder switch (radial lead wire) CAD (File name: Page Ending 12)


• SRL2- ** - ** - *** - M * H * with cylinder switch (axial lead wire)

• SRL2- ** - ** - *** - T * Y * H with cylinder switch (T * YF, T * YM, T *YD)

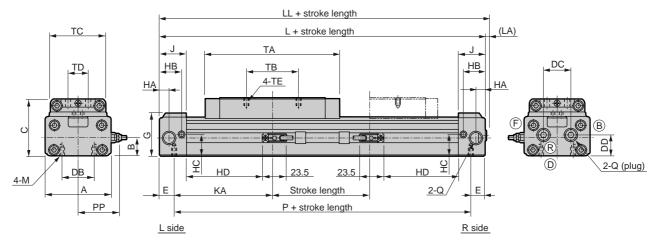
• SRL2- ** - ** - *** - T * Y * V with cylinder switch (T * YF, T *YM)

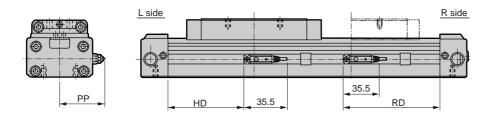

RD: Max. sensitive position HD: Max. sensitive position


mbol e size (mm)	Α	В	С	DB	DC	Е	G	НА	НВ	J	KA	L	LL	LA	М	Р	PQ	Q	ТА	ТВ	тс	TD	TE
 12 dia.	33	10.5	33	10	11	8.5	24	6	14	17.5	59.5	136	139	3	M3 depth 5	119	19	M5	81	42	29	13	M3 depth 5
16 dia.	37	12	37	14	12	8.5	27	6	14	17.5	66	149	152	3	M3 depth 5	132	21	M5	88	48	32	15	M3 depth 5
20 dia.	44	14	42	16	16	10.5	31	8.5	18.5	22	74	169	171.5	2.5	M4 depth 6.5	148	24.5	Rc1/8	100	60	38	18	M4 depth 6

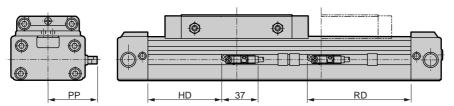
Symbol	With	switc	h						Witl	n foot	brack	et (LE	3)			With	foot	brack	et (LB	1)			
Bore size	Н	D	R	D	F	P	F	PP	C ^	CD	TE		.,	14/	V	C 4	CD	T0	TV		.,	14/	
(mm)	M type	T type	M type	T type	M * V	M * H	T * V	T * H	SA	SB	TF	U	V	W	Λ.	SA	SB	TG	IY	U	V	W	Χ
12 dia.	40.5	36	60.5	65	24.5	26	31	28	32	24	8	6	4	148	3.4	32	24	6	39	6	4	148	3.4
16 dia.	47	42	67	72	26.5	28	33	30	35	26	8	6	4	161	3.4	35	26	6	43	6	4	161	3.4
20 dia.	52.5	48	72.5	77	29.5	31	36	33	43	33	10	6	6	181	4.5	43	33	8	50	6	6	181	4.5

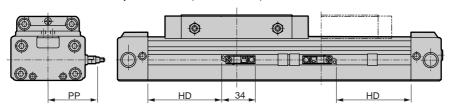
Dimensions (12 to 20 mm bore)


• SRL2-LB- ** - *** with foot bracket CAD (File name: Page Ending 12)



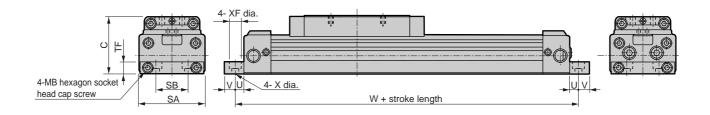
Dimensions (25 to 63 mm bore)


• SRL2- ** - ** - *** - M * V * with cylinder switch (radial lead wire) CAD (File name: Page Ending 12)

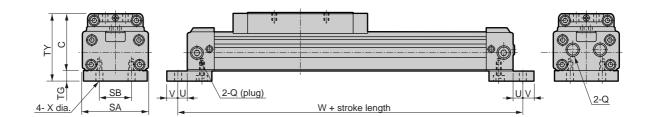

• SRL2- ** - ** - *** - M * H * with cylinder switch (axial lead wire)

• SRL2- ** - ** - *** -T- Y * H with cylinder switch (T * YF, T * YM, T *YD)

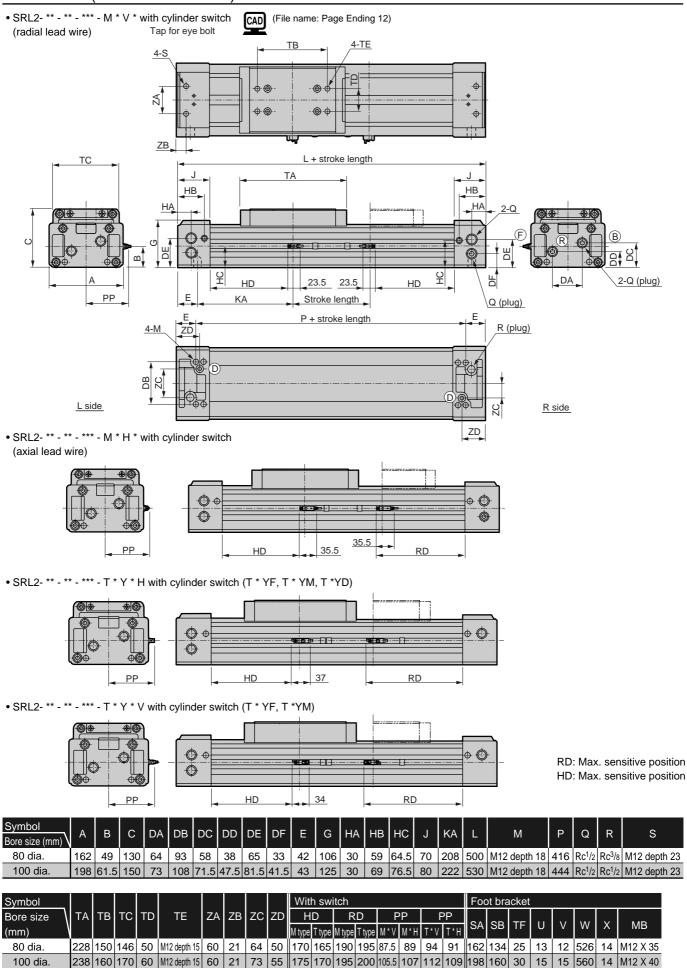
 \bullet SRL2- ** - ** - *** - T * Y * V with cylinder switch (T * YF, T *YM)


RD: Max. sensitive position HD: Max. sensitive position

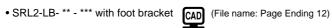
Symb Bore size	ol ze (mm)	Α	В	С	DB	DC	DD	Е	G	НА	НВ	нс	J	KA	L	LL	LA	М	Р	Q	ТА	ТВ	тс	TD	TE
25	dia.	53	17	53	20	26	19	14	40.5	7.5	20	18.9	24	81	190	192	2	M6 depth 9	162	Rc1/8	122	70	48	20	M5 depth 6
32	dia.	66	18.5	57	32	27	21	15	43.5	10	23.5	21.5	28	98	226	228.5	2.5	M6 depth 9	196	Rc1/4	134	80	56	20	M6 depth 7.5
40	dia.	80	22	67	36	35	28	17	51.5	13	26	27	31	105	244	246.5	2.5	M8 depth 12	210	Rc1/4	148	90	68	30	M6 depth 9
50	dia.	96	28	82	45	35	35	23	61	15	33	35.3	39	106	258	260.5	2.5	M8 depth 12	212	Rc ³ /8	152	100	80	30	M8 depth 10.5
63	dia.	118	35	95	50	39	42	19	74	15	32	43	39	129	296	298.5	2.5	M10 depth 15	258	Rc ³ /8	168	110	102	40	M8 depth 11.5

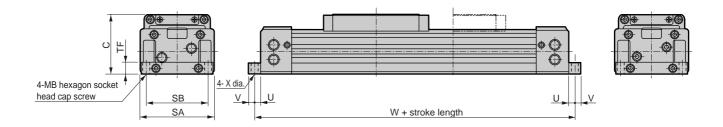

Symbol	Witl	n swi	tch						Wit	h foo	t brad	cket (LB)					Witl	h foo	t brac	cket (LB1)			
Bore size	Н	D	R	D	F	PΡ	F	PP		0.0			.,			\ <u></u>			0.5	Τ.	T) (,,		
(mm)	M type	T type	M type	T type	M * V	M * H	T * V	T * H	SA	SB	TF	U	V	W	Х	XF	MB	SA	SB	IG	IY	U	V	W	X
25 dia.	60	56	82	86	34.5	36	41	38	52	20	12	9	11	208	7	-	M5 X 50	50	20	10	63	9	11	208	7
32 dia.	74	70	98	100	41.5	43	48	45	64	32	12	9	11	244	7	-	M5 X 50	64	32	10	67	9	11	244	7
40 dia.	80	78	102	106	48.5	50	55	52	80	36	15	11	9	266	9	14 spot face depth 8.6	M6 X 55	-	-	-	-	-	-	-	-
50 dia.	79	75	101	105	56.5	58	68	60	94	45	20	11	9	280	9	14 spot face depth 8.6	M8 X 65	-	-	-	-	-	-	-	-
63 dia.	98	94	120	124	67.5	69	74	71	116	50	25	13	12	322	11	17.5 spot face depth 10.8	M8 X 70	-	-	-	-	-	-	-	-

Dimensions (25 to 63 mm bore)


ullet SRL2-LB- ** - *** with foot bracket lacksquare (File name: Page Ending 12)

• SRL2-LB1- ** - *** with foot bracket CAD (File name: Page Ending 12)




Dimensions (80 to 100 mm bore)

Double acting

Dimensions (80 to 100 mm bore)

Rodless cylinder, resin guide type

SRL2-G Series

• Bore size:

12, 16, 20, 25, 32 mm bore 40, 50, 63, 80, 100 mm bore

JIS symbol

Specifications

Op comoditions								
Descriptions				SR	L2-G			
Bore size mm	12 dia. 16 dia.	20 dia.	25 dia.	32 dia.	40 dia.	50 dia.	63 dia.	80 dia. 100 dia.
Actuation				Double	acting			
Working fluid			(Compre	ssed ai	r		
Max. working pressure MPa				0	.7			
Min. working pressure (Note 2) MPa	0.25			0.15			0.	.1
Withstanding pressure MPa				1.0	05			
Ambient temperature °C				5 tc	60			
Port size	M5	Rc	1/8	Ro	1/4	Ro	3/8	Rc1/2
Stroke length tolerance mm	+2.	.0 (to 10	00)	^{+2.5} ₀ (to	3000)	^{+3.0} ₀ (t	o 5000)	
Working piston speed mm/s		50 to	2000 (s	tandard	port pi	oing) (N	ote 1)	
Cushion				Air cu	shion			
Lubrication	Not required (when lu	ubrication,	use turbin	e oil Class	1 ISO VG	32. Continu	ue to lubrica	ate once lubricated).

Note 1: Working piston speed, when using with common port piping, may vary depending on stroke length. Consult with CKD. Note 2: For low pressure specifications "LP" (12 to 20mm), 0.15MPa.

Allowable energy absorption

Bore size Cushioned No cushion With shock absorber (initial set value) (mm) Allowable energy absorption (J) Cushion stro length (mm Absorbed energy (J) 12 dia 0.03 14.5 0.003 2.4 5.5 0.22 5.5 16 dia. 19.2 0.007 2.4 0.59 7 20 dia. 22.2 5.7 0.010 1.40 9 25 dia. 20.9 0.015 10 32 dia. 2.57 23.5 0.030 18 13 40 dia. 4.27 23.9 0.050 50 16.5 21 9.13 24.9 0.072 50 dia. 86 63 dia. 17.4 29.6 0.138 86 21 40 45.8 0.393 25 80 dia. 143 67 45.8 0.622 143 25 100 dia.

Stroke length

Bore size (mm)	Standard stroke length (mm)	Max. stroke length (mm)	Min. stroke length (mm)
12 dia. 16 dia. 20 dia. 25 dia. 32 dia. 40 dia. 50 dia. 63 dia. 80 dia. 100 dia.	200, 300 400, 500 600, 700 800, 900 1000	5000	The value may vary depending on switch model No. and installation quantity. (Refer to the below table about details.)

• Custom stroke length is available per 1 mm increment.

M type switch installation quantity and minimum stroke length (mm)

W typo ownton mote	anati	J., 4,	aarit	ity ai	14 11		MIII I	Oti Oi			(''/						
Switch quantity	,	1	2	2	(3	4	4	5	5	(3	-	7	3	3	ę)
Switch model No. Bore size (mm)	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H
12 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
16 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
20 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
25 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
32 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
40 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
50 dia.	15	15	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
63 dia.	15	15	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
80 dia.	2	25	5	0	1	00	1:	50	20	00	2	50	3	00	3	50	40	00
100 dia.	2	25	5	0	1	00	1:	50	20	00	2	50	3	00	3	50	40	00

T type switch installation quantity and minimum stroke length (mm)

- type evinteri irieta				-,						-9	(-,						
Switch quantity	,	1	2	2	(3	4	4	5	5	(6	7	7	}	3		9
Switch model No. Bore size (mm)	T*Y*V	T*Y*H	T*Y*V	T*Y*H	T * Y * V	T*Y*H	T*Y*V	T*Y*H	T*Y*V	T*Y*H	T*Y*V	T*Y*H	T * Y * V	T*Y*H	T * Y * V	T*Y*H	T * Y * V	T*Y*H
12 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
16 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
20 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
25 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
32 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
40 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
50 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
63 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
80 dia.	15	15	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
100 dia.	15	15	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400

Switch specifications

One color/bi-color indicator

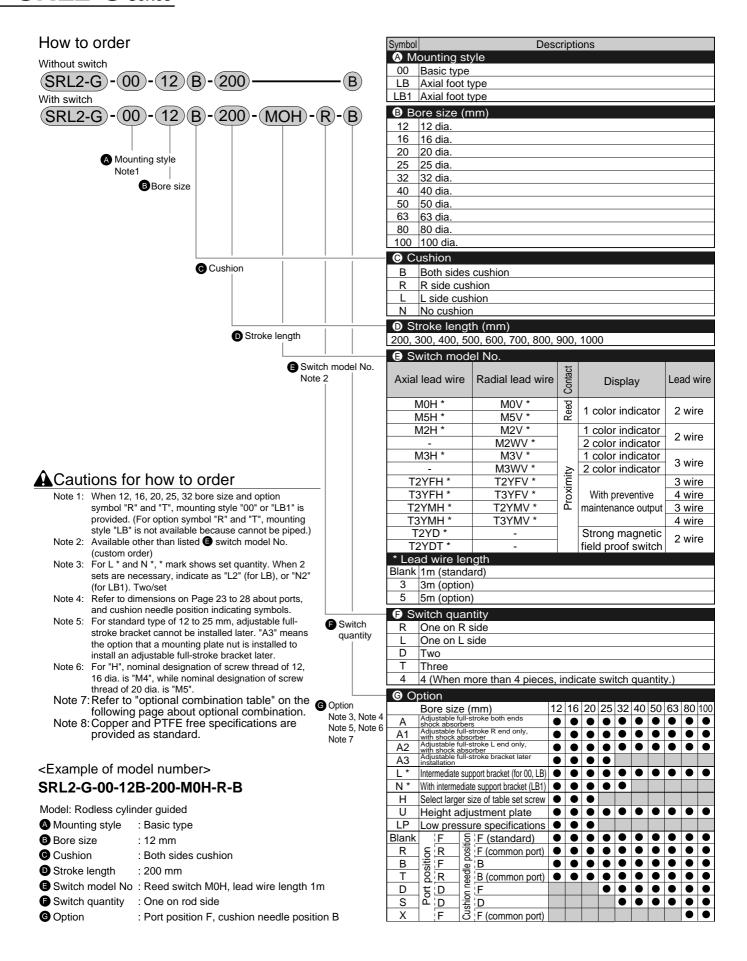
	Proximit	ty 2 wire	Proximit	y 3 wire
Descriptions	M2V, M2H	M2WV (2 color indicator)	M3V, M3H	M3WV (2 color indicator)
Applications	Programmal	ole controller	Programmable controller, relay	IC circuit, small solenoid valve
Power voltage		-	DC4.5 to 28V	DC10 to 28V
Load voltage	DC10	to 30V	DC30V or less	DC30V or less
Load current	5 to 3	30mA	200mA or less	150mA or less
Light	LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Red/green LED (ON lighting)
Descriptions			Reed 2 wire	
Descriptions	MOV,	M0H	M5V,	M5H
Applications	Programmable	controller, relay	Programmable controller, relay, IC circuit	(without indicator light), serial connection
Power voltage		=		-
Load voltage	DC12/24V	AC110V	DC5/12/24V	AC110V or less
Load current	5 to 50mA	7 to 20mA	50mA or less	20mA or less
Light	LED (ON	l lighting)	Without inc	licator light

Note 1: For MO * switch, if load current range is within 7 to 20mA, this switch can be used with AC24V and AC48V.

• With preventive maintenance output

* *	i provontivo mainte	manoo oatpat						
Descriptions		Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire			
		T2YF H/V	T3YF H/V	T2YM H/V	T3YM H/V			
Applications		Programmable controller	Programmable controller, relay	Programmable controller	Programmable controller, relay			
Light	Installation position adjustment		Red/green LEI	D (ON lighting)				
Ë	Preventive maintenance output		-	Yellow LED (ON lighting)				
	Power voltage	•	DC10 to 28V	-	DC10 to 28V			
	Load voltage	DC10 to 30V	DC30V	DC10 to 30V	DC30V or less			
put	Load current	DC5 to 20mA	DC50mA or less	DC5 to 20mA	DC50mA or less			
Output	Internal voltage drop	4V or less	0.5V or less	4V or less	0.5V or less			
	Current consumption	-	10mA or less	-	10mA or less			
	Leakage current	1mA or less	10 micron A or less	1.2mA or less	10 micron A or less			
Jce	Load voltage		DC30V	/ or less				
Preventive maintenance output	Load current	DC20mA or less	DC50mA or less	DC5 to 20mA	DC50mA or less			
	Internal voltage drop	0.5V	or less	4V or less	2.4V or less			
	Leakage current		10 micron	A or less				
	Signal holding (Ton)	-	-	0.4 ±0.2sec after installation position adjustment red LED turned on.				
Pre	Signal release (Toff)	-	-	0.7 ±0.2sec after installation position adjustment red LED turned on.				

• Strong magnetic field


Descriptions	Proximity 2 wire					
Descriptions	T2YD					
Applications	Programmable controller					
Light	Red/green LED (ON lighting)					
Load voltage	DC24V ±10%					
Load current	5 to 20mA					
Internal voltage drop	6V or less					
Leakage current	1.0mA or less					

Cylinder mass

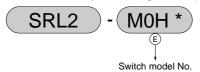
Unit: kg	
----------	--

	Mass v	Additional					
Bore size (mm)	Basic type	Foot	type	Mass per switch	mass per		
	(00)	(LB)	(LB1)	(including bracket.)	St = 100mm		
12 dia.	0.24	0.25	0.26		0.10		
16 dia.	0.32	0.33	0.35		0.13		
20 dia.	0.52	0.54	0.58		0.18		
25 dia.	1.0	1.1	1.1		0.30		
32 dia.	1.5	1.6	1.7	0.02	0.39		
40 dia.	2.4	2.5	-	0.02	0.56		
50 dia.	3.6	3.7 -			0.78		
63 dia.	6.2	6.5	-		1.17		
80 dia.	18.8	19.4 -			2.32		
100 dia.	26.6	27.6	-		3.38		

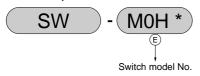
SRL2-G Series

Optional combination table •: Combination available :: Combination not available

			•:	Cor	nıdn	atioi	n av	allar	эіе		: C	amo	ınatı	on r	ot a	vaila	abie
		Option															
		> Adjustable full-stroke both ends with shock absorbers	≥ Adjustable full-stroke R end only, with shock absorber	공 Adjustable full-stroke L end only, with shock absorber	공 Adjustable full-stroke bracket later installation	The Intermediate support bracket (for 00, LB)	$\left \frac{Z}{*}\right $ Intermediate support bracket (LB1)	T C mount bracket	C Select larger size of table set screw	● ● ● ☐ Height adjustment plate	Low pressure specifications	lacksquare $lacksquare$	 Φ Φ Φ Φ Φ Port position F, cushion needle position B 	● ● ● ● ● → Port position R, cushion needle position B (common port)	 □ □ □ □ □ □ □ Port position D, cushion needle position F 	 O O O O O O O O O O O O O O O O O O O	$lackbox{igspace}ig lackbox{igspace}ig igxbox{igspace}ig igxbox{igspace}ig igxbox{igspace}ig $ Port position F, cushion needle position F (common port)
	Symbol	Α	A1	A2	А3	L*	N *	Н	U	LP	Blank	R	В	Т	D	S	X
	Α					•	•	•	•	•	•	•	•	•	•	•	
	A1					•	•	•	•	•	•	•	•	•	•	•	
	A2					•	•	•	•	•	•	•	•	•	•	•	
	A3				\setminus	lacksquare	•	•	•	•	•	•	•	•	•	•	
	L*							•	•	•	lacksquare	•	•	•	•	•	
	N *						\setminus	lacksquare	•	•	•	•	•	•	•	•	
_	Н							\geq			•	•	•	•	•	•	
Option	U										•		•	•	•	•	
do	LP											•	•	•	•	•	
	Blank																
	R																
	В																
	Т													\triangle			
	D																
	Symbol A A1 A2 A3 L* N* H U LP Blank R B T D S X															ightharpoons	
	X																


Note 1: Some combination is impossible depending on bore size. Confirm the conditions of options of "how to order" on the previous page. Note 2: When port position D, LB1 is not available. (25, 32 mm bore)

SRL2-G Series

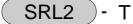

How to order switch

(Please refer to Page Ending 9 to 11 about components.)

• Switch main body + mounting bracket (Note 1)

· Switch only

* Lead wire length							
Blank	1m (standard)						
3	3m (option)						
5	5m (option)						


^{*} mark indicates lead wire length.

• Mounting bracket (Note 2)

• M type switch

• T type switch

• Lead wire holder (Note 3)

Note 1. Switch main body + mounting bracket set doesn't include any lead wire holder. When a lead wire holder is necessary, place an order separately.

Note 2. M type switch bracket is different from T type switch.

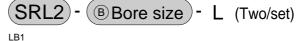
Note 3. Lead wire holder is 10 pieces/set.

• How to order discrete shock absorber

(One shock absorber, one shock absorber fixing hex. nut)

(Note) Shock absorber fixing hex. nut for SRL2- 40 is a custom part.

Applicable shock absorber model No.


Model	Shock absorber model No.				
SRL2-12	NCK-0.3-C				
SRL2-16	NCK-0.3-C				
SRL2-20	NCK-0.7-C				
SRL2-25	NCK-1.2				
SRL2-32	NCK-2.6				
SRL2-40	NCK-7				
SRL2-50	NCK-12				
SRL2-63	NCK-12				
SRL2-80	NCK-20				
SRL2-100	NCK-20				

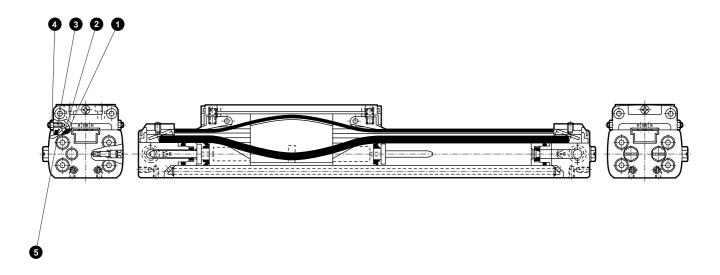
• How to order discrete C mount bracket (for 12 to 63 mm bore)

(C mount bracket, 4 mounting bolts)

 How to order discrete intermediate support bracket LB

• How to order adjustable full-stroke kit

• How to order repair parts


• How to order mounting bracket

(Two brackets, 4 mounting bolts)

• How to order height adjustment plate set

(Plate, 4 mounting bolts)

Internal structure and parts list (12 to 40 mm bore)

Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Slider	Acetar resin		4	Nut	Steel	Blackening
2	Slider plate	Steel	Galvanizing	5	Dust wiper	Acetar resin	
3	Adjust screw	Steel	Blackening				

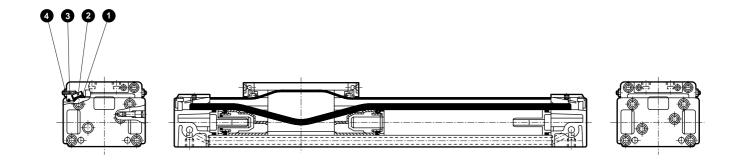
Repair parts list

Bore size (mm)	Kit number	Repair parts number
12 dia.	SRL2-G-12K- *	
16 dia.	SRL2-G-16K- *	
20 dia.	SRL2-G-20K- *	0 9 9 9
25 dia.	SRL2-G-25K- *	9 29 39
32 dia.	SRL2-G-32K- *	
40 dia.	SRL2-G-40K- *	

Note 1: When placing an order, indicate kit number, and indicate stroke length at *. Note 2: For part number of ③ ④ ② ② ③, refer to Page 6.

SRL2-G Series

Internal structure and parts list (50 to 63 mm bore)


Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
_1	Slider	Acetar resin		4	Nut	Steel	Blackening
2	Slider plate	Steel	Galvanizing	5	Dust wiper	Acetar resin	
3	Adjust screw	Steel	Blackening				

Repair parts list

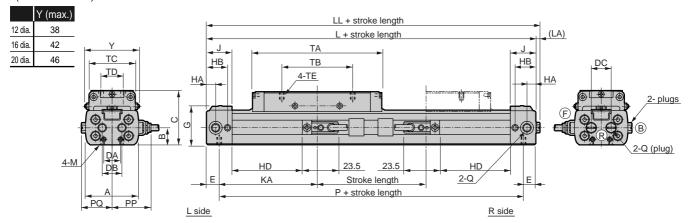
Bore size (mm)	Kit number	Repair parts number
50 dia.	SRL2-G-50K- *	0 6 8 9
63 dia.	SRL2-G-63K- *	3

Note 1: When placing an order, indicate kit number, and indicate stroke length at *. Note 2: For part number of 3 9 2 23, refer to Page 7.

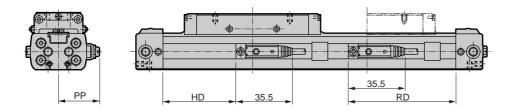
Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Slider	Acetar resin		3	Adjust screw	Steel	Blackening
2	Slider plate	Steel	Galvanizing	4	Nut	Steel	Blackening

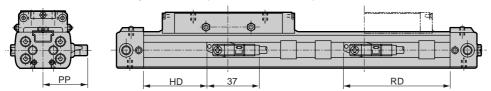
Repair parts list

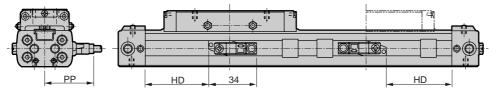

Bore size (mm)	Kit number	Repair parts number
80 dia.	SRL2-G-80K- *	0 0 0 0
100 dia.	SRL2-G-100K- *	9 20 29 29

Note 1: When placing an order, indicate kit number, and indicate stroke length at *. Note 2: For part number of ③ ② ② ② ② , refer to Page 8.


SRL2-G Series

Dimensions (12 to 20 mm bore)


• SRL2-G- ** - ** - *** - M * V * with cylinder switch (radial lead wire)

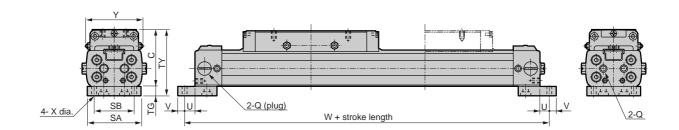

• SRL2-G- ** - ** - *** - M * H * with cylinder switch (axial lead wire)

• SRL2-G- ** - ** - *** - T * Y * H with cylinder switch (T * YF, T * YM, T *YD)

• SRL2-G- ** - ** - *** - T * Y * V with cylinder switch (T * YF, T *YM)

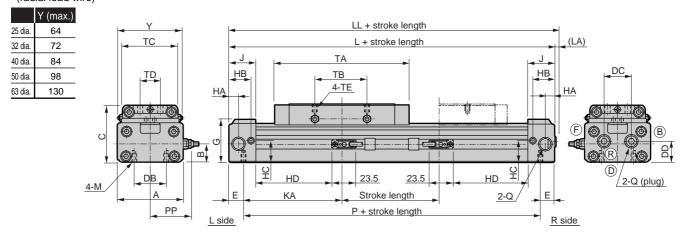

RD: Max. sensitive position HD: Max. sensitive position

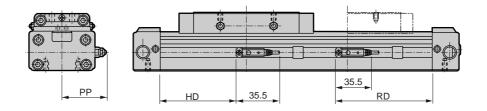
Symbol Bore size (mm)	А	В	С	DA	DB	DC	Е	G	НА	НВ	J	KA	L	LL	LA	М	Р	PQ	Q	TA	ТВ	TC	TD	TE	Υ
12 dia.	33	10.5	33	8	10	11	8.5	24	6	14	17.5	59.5	136	139	3	M3 depth 5	119	19	M5	81	42	29	13	M3 depth 5	37
16 dia.	37	12	37	12	14	12	8.5	27	6	14	17.5	66	149	152	3	M3 depth 5	132	21	M5	88	48	32	15	M3 depth 5	40
20 dia.	44	14	42	12	16	16	10.5	31	8.5	18.5	22	74	169	171.5	2.5	M4 depth 6.5	148	24.5	Rc ¹ /8	100	60	38	18	M4 depth 6	46


Symbol	With	swite	ch						Witl	h foot	brack	ket (L	В)				With	n foot	brack	et (Ll	31)			
Bore size	HD					0.0			.,					0.5	Τ.	T \(.,	147	_				
(mm)	M type	T type	M type	T type	M * V	M * H	T * V	T*H	SA	SB	TF	U	V	W	Х	MB	SA	SB	TG	TY	U	V	W	Х
12 dia.	40.5	36	60.5	65	24.5	26	31	28	32	24	8	6	4	148	3.4	M3 X 10	32	24	6	39	6	4	148	3.4
16 dia.	47	42	67	72	26.5	28	33	30	35	26	8	6	4	161	3.4	M3 X 10	35	26	6	43	6	4	161	3.4
20 dia.	52.5	48	72.5	77	29.5	31	36	33	43	33	10	6	6	181	4.5	M4 X 12	43	33	8	50	6	6	181	4.5

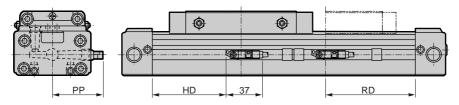
Dimensions (12 to 20 mm bore)

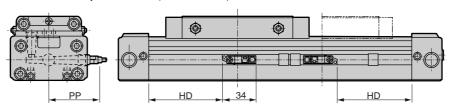
• SRL2-G-LB- ** - *** with foot bracket


• SRL2-G-LB1- ** - *** with foot bracket


SRL2-G Series

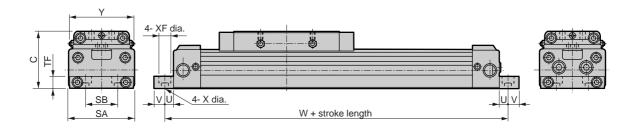
Dimensions (25 to 63 mm bore)


• SRL2-G- ** - ** - *** - M * V * with cylinder switch (radial lead wire)

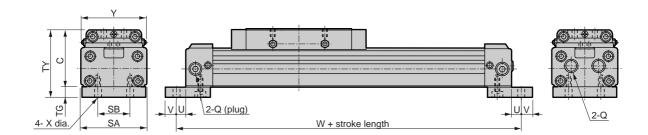

• SRL2-G- ** - ** - *** - M * H * with cylinder switch (axial lead wire)

• SRL2-G- ** - ** - *** - T * Y * H with cylinder switch (T * YF, T * YM, T *YD)

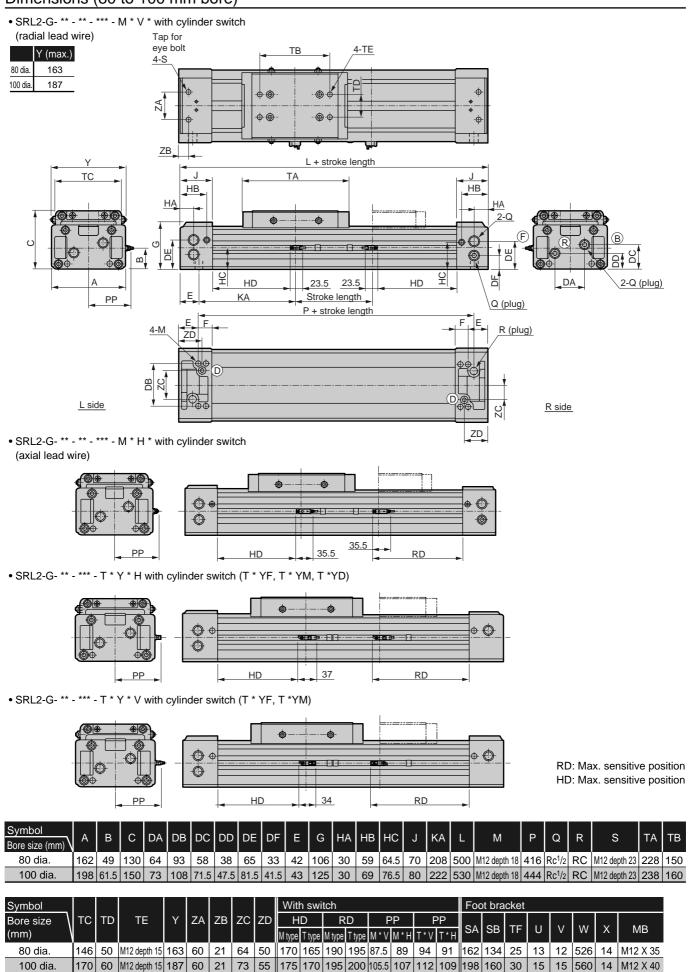
• SRL2-G- ** - ** - *** - T * Y * V with cylinder switch (T * YF, T *YM)


RD: Max. sensitive position HD: Max. sensitive position

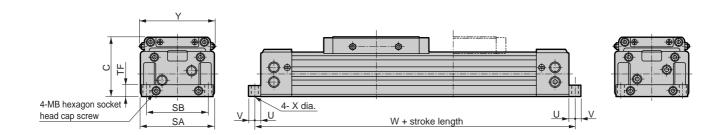
Symbol Bore size (mm)	Α	В	С	DB	DC	DD	Е	G	НА	НВ	нс	J	KA	L	LL	LA	М	Р	Q	ТА	ТВ	тс	TD	TE	Υ
25 dia.	53	17	53	20	26	19	14	40.5	7.5	20	18.9	24	81	190	192	2	M6 depth 9	162	Rc1/8	122	70	48	20	M5 depth 6	61
32 dia.	66	18.5	57	32	27	21	15	43.5	10	23.5	21.5	28	98	226	228.5	2.5	M6 depth 9	196	Rc1/4	134	80	56	20	M6 depth 7.5	69
40 dia.	80	22	67	36	35	28	17	51.5	13	26	27	31	105	244	246.5	2.5	M8 depth 12	210	Rc1/4	148	90	68	30	M6 depth 9	81
50 dia.	96	28	82	45	35	35	23	61	15	33	35.3	39	106	258	260.5	2.5	M8 depth 12	212	Rc ³ /8	152	100	80	30	M8 depth 10.5	95
63 dia.	118	35	95	50	39	42	19	74	15	32	43	39	129	296	298.5	2.5	M10 depth 15	258	Rc ³ /8	168	110	102	40	M8 depth 11.5	117


Symbol	Wit	n swit	ch						Wit	h foo	t brac	cket (LB)					Wit	h foo	t brac	ket (l	LB1)			
Bore size	Н	D	R	D	P	P	F	PP		0.0	T E		.,	147		VE	MD	O A	0.0	Τ.	T\/		.,	10/	V
(mm)	M type	T type	M type	T type	M * V	M * H	T * V	T*H	SA	SB	TF	U	V	W	Х	XF	MB	SA	SB	IG	ΙΥ	U	V	W	Х
25 dia.	60	56	82	86	34.5	36	41	38	52	20	12	9	11	208	7	-	M5 X 50	50	20	10	63	9	11	208	7
32 dia.	74	70	98	100	41.5	43	48	45	64	32	12	9	11	244	7	-	M5 X 50	64	32	10	67	9	11	244	7
40 dia.	80	78	102	106	48.5	50	55	52	80	36	15	11	9	266	9	14 spot face depth 8.6	M6 X 55	-	-	-	-	-	-	-	-
50 dia.	79	75	101	105	56.5	58	68	60	94	45	20	11	9	280	9	17.5 spot face depth 10.8	M8 X 65	-	-	-	-	-	-	-	-
63 dia.	98	94	120	124	67.5	69	74	71	116	50	25	13	12	322	11	14 spot face depth 8.6	M8 X 70	-	-	-	-	-	-	-	-

Dimensions (25 to 63 mm bore)


• SRL2-G-LB- ** - *** with foot bracket (25 to 63 mm bore)

• SRL2-G-LB1- ** - *** with foot bracket (25, 32 mm bore)


Dimensions (80 to 100 mm bore)

Double acting/resin guide type

Dimensions (80 to 100 mm bore)

• SRL2-G-LB- ** - *** with foot bracket

Rodless cylinder, double acting/position locking function

SRL2-Q Series

• Bore size:

12, 16, 20, 25, 32 mm bore 40, 50, 63, 80, 100 mm bore

JIS symbol

Specifications

Specific	ations										
Description	ns					SR	L2-Q				
Bore size	mm	12 dia.	16 dia.	20 dia.	25 dia.	32 dia.	40 dia.	50 dia.	63 dia.	80 dia.	100 dia.
Actuation						Double	acting				
Working fluid	d					Compre	ssed ai	r			
Max. working p	ressure MPa					0	.7				
Min. working pressu	ure (Note 2) MPa		0.2			0.	15			0.1	
Withstanding p	ressure MPa					1.	05				
Ambient temp	perature °C					5 tc	60				
Port size	Cylinder section	N	15	Ro	:1/8	Ro	:1/4	Ro	3/8	Ro	21/2
FUIT SIZE	Position locking part	N	15				Ro	1/8			
Stroke length to	olerance mm	+2.0	(to 100	00)		^{+2.5} ₀ (to	3000)		+3.0 0	o (to 500	00)
Working piston	speed mm/s			50 to	2000 (s	tandard	port pip	oing) (N	ote 1)		
Cushion						Air cu	shion				
Lubrication		Not requ	ired (turbir	ne oil Clas	s 1 ISOV	332 should	d be used.	. Continue	to lubrica	te once lu	bricated.)
Position lockii	ng mechanism		·	·	Install	ation or	cover	R side			
Holding force	e N				N	Max. thr	ust X 0.	7			

- Note 1.(1) When operating with 500 to 2000mm/s speed, rush speed for position locking mechanism should be 500mm/sor less. For common port pipe, working piston speed varies depending on stroke length. Consult with CKD.
 - (2) For deceleration method, install an external shock absorber or a deceleration circuit etc.
 - (3) Apply grease to sliding section of lock lever periodically.
- Note 2. For low pressure specifications "LP" (12 to 20mm), 0.1MPa

Allowable energy absorption

/ IIIOWAD	ne energy	absorption	/I I		
Bore size	Cush	ioned	No cushion	With shock absorb	er (initial set value)
(mm)	Allowable energy absorption (J)	Cushion stroke length (mm)	Allowable energy absorption (J)	Absorbed energy (J)	Effective stroke length (mm)
12 dia.	0.03	14.5	0.003	2.4	5.5
16 dia.	0.22	19.2	0.007	2.4	5.5
20 dia.	0.59	22.2	0.010	5.7	7
25 dia.	1.40	20.9	0.015	10	9
32 dia.	2.57	23.5	0.030	18	13
40 dia.	4.27	23.9	0.050	50	16.5
50 dia.	9.13	24.9	0.072	86	21
63 dia.	17.4	29.6	0.138	86	21
80 dia.	40	45.8	0.393	143	25
100 dia.	67	45.8	0.622	143	25

Stroke length

Bore size (mm)	Standard stroke length (mm)	Max. stroke length (mm)	Min. stroke length (mm)
12 dia. 16 dia. 20 dia. 25 dia. 32 dia. 40 dia. 50 dia.	200, 300 400, 500 600, 700 800, 900	5000	The value may vary depending on switch model No. and installation quantity.
63 dia.	1000		(Refer to the below table
80 dia. 100 dia.			about details.)

M type switch installation quantity and minimum stroke length (mm) • Custom stroke length is available per 1 mm increment.

w typo ownton motal	iatio	. 944	ر ۱۱۱۱۰۰	, and		minai		OILO I	ong	(··· <i>,</i>							
Switch quantity		1	:	2	(3	4	4	Ę	5	(6	-	7	8	3	ę	9
Switch model No. Bore size (mm)	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H	M * V	M * H
12 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
16 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
20 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
25 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
32 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
40 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
50 dia.	15	15	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
63 dia.	15	15	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
80 dia.	2	25	5	50	10	00	1:	50	2	00	2	50	3	00	3	50	40	00
100 dia.	2	25	5	50	10	00	1:	50	2	00	2	50	3	00	3	50	40	00

T type switch installation quantity and minimum stroke length (mm)

,		-		-,								٠,						
Switch quantity		1		2	;	3	4	4	Ę	5	6	3	-	7	3	3	(9
Switch model No. Bore size (mm)	T*Y*V	T*Y*H	T*Y*V	T*Y*H	T*Y*V	T*Y*H	T*Y*V	T*Y*H	T * Y * V	T*Y*H	T*Y*V	T*Y*H	T * Y * V	T*Y*H	T * Y * V	T*Y*H	T * Y * V	T*Y*H
12 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
16 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
20 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
25 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
32 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
40 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
50 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
63 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
80 dia.	15	15	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
100 dia.	15	15	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400

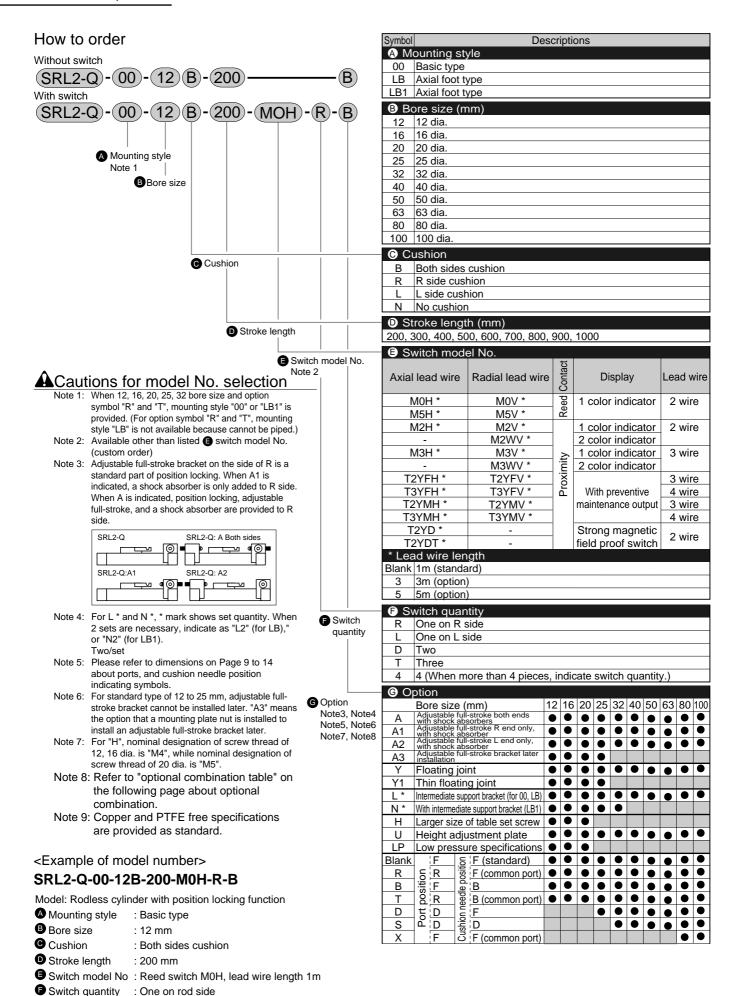
Switch specifications

·	Proximit	y 2 wire	Proximit	ty 3 wire			
Descriptions	M2V, M2H	M2WV (2 color indicator)	M3V, M3H	M3WV (2 color indicator)			
Applications	Programmal	ole controller	Programmable controller, ı	relay, IC circuit, small valve			
Power voltage		=	DC4.5 to 28V	DC10 to 28V			
Load voltage	DC10	to 30V	DC30V or less	DC30V or less			
Load current	5 to 3	30mA	200mA or less	150mA or less			
Light	LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Red/green LED (ON lighting)			
Descriptions			Reed 2 wire				
Descriptions	M0V,	M0H	M5V, M5H				
Applications	Programmable	controller, relay	Programmable controller, relay, IC circuit (without indicator light), serial connection				
Power voltage		=		-			
Load voltage	DC12/24V AC110V		DC5/12/24V	AC110V or less			
Load current	5 to 50mA	7 to 20mA	50mA or less	20mA or less			
Light	LED (ON	l lighting)	Without indicator light				

Note 1: For MO * switch, if load current range is within 7 to 20mA, this switch can be used with AC24V and AC48V.

• With preventive maintenance output

- 44161	i proventive mainte	manoc output								
Doo	orintions	Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire					
Desi	criptions	T2YF H/V	T3YF H/V	T2YM H/V	T3YM H/V					
Applications		Programmable controller	Programmable controller, relay	Programmable controller	Programmable controller, relay					
Light	Installation position adjustment	Red/green LED (ON lighting)								
ij	Preventive maintenance output		-	Yellow LED	(ON lighting)					
	Power voltage	-	DC10 to 28V	-	DC10 to 28V					
	Load voltage	DC10 to 30V	DC30V	DC10 to 30V	DC30V or less					
Output	Load current	DC5 to 20mA	DC50mA or less	DC5 to 20mA	DC50mA or less					
Out	Internal voltage drop	4V or less	0.5V or less	4V or less	0.5V or less					
	Current consumption	-	10mA or less	-	10mA or less					
	Leakage current	1mA or less	10 micron A or less	1.2mA or less	10 micron A or less					
a)Ce	Load voltage		DC30V	or less						
Preventive maintenance output	Load current	DC20mA or less	DC50mA or less	DC5 to 20mA	DC50mA or less					
naint put	Internal voltage drop	0.5V	or less	4V or less	2.4V or less					
ve n	Leakage current		10 micron	A or less						
venti	Signal holding (Ton)	-	-	0.4 ±0.2sec after installation posit	ion adjustment red LED turned on.					
Pre	Signal release (Toff)	-	-	0.7 ±0.2sec after installation position adjustment red LED turned on.						


Strong magnetic field

Descriptions	Proximity 2 wire						
Descriptions	T2YD						
Applications	Programmable controller						
Light	Red/green LED (ON lighting)						
Load voltage	DC24V ±10%						
Load current	5 to 20mA						
Internal voltage drop	6V or less						
Leakage current	1.0mA or less						

Cylinder mass

	Mass v	Additional			
Bore size (mm)	Basic type	Foot	type	Mass per switch	mass per
	(00)	(LB)	(LB1)	(including bracket.)	St = 100mm
12 dia.	0.38	0.25	0.26		0.10
16 dia.	0.47	0.33	0.35		0.13
20 dia.	0.74	0.54	0.58		0.18
25 dia.	1.5	1.6	1.1		0.30
32 dia.	2.4	2.5	1.7	0.02	0.39
40 dia.	3.6	3.7	-	0.02	0.56
50 dia.	6.1	6.2	-		0.78
63 dia.	8.9	9.2	-		1.17
80 dia.	22.4	23.0	-		2.32
100 dia.	30.5	31.5	-		3.38

SRL2-Q Series

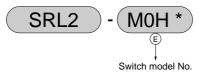
G Option

: Port position F, cushion needle position B

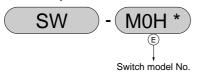
Optional combination table

● : Combination available ■ : Combination not available

_					_) : C	amo	ınatı	on a	ıvall	able		: C	omb	ınatı	on r	ot a	valla	able
										Opt	ion								
		Adjustable full-stroke both ends with shock absorbers	Adjustable full-stroke R end only, with shock absorber	Adjustable full-stroke L end only, with shock absorber	Adjustable full-stroke bracket later installation	Floating joint	국 Thin type floating joint	${\color{black} \top} $ Intermediate support bracket (for 00, LB)	$\left. egin{array}{c} Z \end{array} ight $ Intermediate support bracket (LB1)	Select larger size of table set screw	C Height adjustment plate	● ● ● ● ● ● ● □ Low pressure specifications	Port position F, cushion needle position F (standard)	Port position R, cushion needle position F (common port)	Port position F, cushion needle position B	→ Port position R, cushion needle position B (common port)	ס Port position D, cushion needle position F	ω Port position D, cushion needle position D	$lackbox{lack}lackbox{lack}lackbox{lack}lackbox{lack}lackbox{lack}lackbox{lack}lackbox{lack}lackbox{lack}lackbox{lack}lackbox{lack}lackbox{lackbox}lackbox{ar{ackbox}lackbox{ar{ackbo$
	Symbol	Α	A1	A2	A3	Υ	Y1	L*	N *	Н	U	LP	Blank	R	В	Т	D	S	Х
	Α	\setminus				•	•	•	•	•	•	•	•	•	•	•	•	•	
	A1					•	•	•	•	•	•	•	•	•	•	•	•	•	
	A2					•	•	•	•				•	•	•	•	•	•	
	A3				\rightarrow	lacksquare	•	•	•			•	_	•	•	•	•	•	
	Y					\rightarrow			•							•	•	•	
	Y 1						\rightarrow	$\overline{}$								•	-	•	
	N *							\rightarrow									-	-	
on	Н									\setminus			•				•	-	
Option	U									\rightarrow		•	•	•	•	•	•	•	
O	LP										_	\setminus	•	•	•	•	•	•	•
	A A1 A2 A3 Y Y1 L* N* H U LP Blank																		
	В																		
	R B T D																		
	D																		
	S																		
	٨																		\Box


Note 1: Some combination is impossible depending on bore size. Confirm the conditions of options of "how to order" **6** on the previous page. Note 2: When port position D, LB1 is not available. (25, 32 mm bore)

SRL2-Q Series


How to order switch

(Please refer to Page Ending 9 to 11 about components.)

• Switch main body + mounting bracket (Note 1)

· Switch only

 * Lead wire length

 Blank
 1m (standard)

 3
 3m (option)

 5
 5m (option)

• Mounting bracket (Note 2)

M type switch

• T type switch

• Lead wire holder (Note 3)

Note 1. Switch main body + mounting bracket set doesn't include any lead wire holder. When a lead wire holder is necessary, place an order separately.

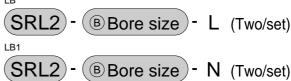
Note 2. M type switch bracket is different from T type switch.

Note 3. Lead wire holder is 10 pieces/set.

• How to order discrete shock absorber

(One shock absorber, one shock absorber fixing hex. nut)

(Note) Shock absorber fixing hex. nut for SRL2- 40 is a custom part.


Applicable shock absorber model No.

Model	Shock absorber model No.
SRL2-12	NCK-0.3-C
SRL2-16	NCK-0.3-C
SRL2-20	NCK-0.7-C
SRL2-25	NCK-1.2
SRL2-32	NCK-2.6
SRL2-40	NCK-7
SRL2-50	NCK-12
SRL2-63	NCK-12
SRL2-80	NCK-20
SRL2-100	NCK-20

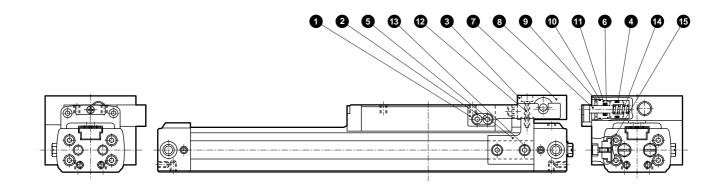
• How to order floating joint set

(Mount, mount base, pin, plain washer, pan head machine screw with spring washer)

How to order discrete intermediate support bracket

• How to order adjustable full-stroke kit

• How to order repair parts


• How to order mounting bracket

(Two brackets, 4 mounting bolts)

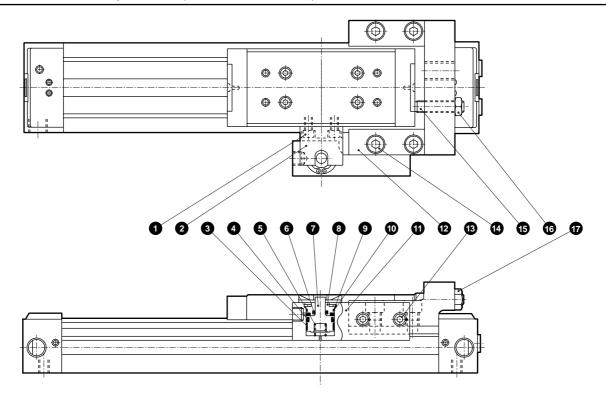
• How to order height adjustment plate set

(Plate, 4 mounting bolts)

^{*} mark indicates lead wire length.

Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Lock lever	Steel	Quenching	9	C type snap ring for hole	Steel	
2	Hexagon socket head cap screw	Steel		10	Gasket	Nitrile rubber	
3	Stopper	Steel	Blackening	11	Rod cover	Aluminum alloy	
4	Piston packing seal	Nitrile rubber		12	Hexagon socket head cap screw	Steel	Blackening
5	Adaptor	Steel		13	Hexagon socket head cap screw	Steel	Blackening
6	Rod packing seal	Nitrile rubber		14	Spring	Steel	Electrodeposition coating
7	Position locking main body	Aluminum alloy	Black alumite	15	Plate nut	Steel	Blackening
8	Lock pin (stopper piston)	Steel	Chrome plated				


Repair parts list

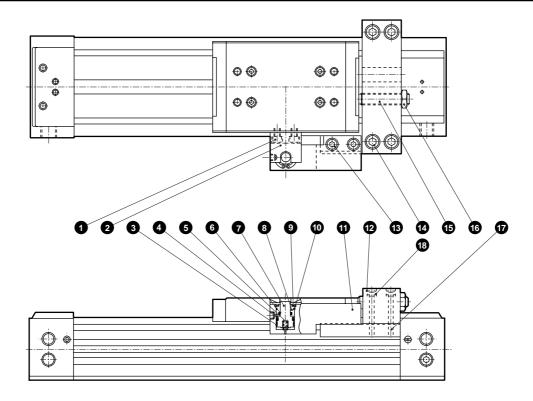
rtopan parto not								
Bore size (mm)	Kit number	Repair parts number						
12 dia.	SRL2-Q-12K- *							
16 dia.	SRL2-Q-16K- *	460						
20 dia.	SRL2-Q-20K- *	8 9 9 9 9 9						
25 dia.	SRL2-Q-25K- *							
N		diametra laita accomplicate a company in alia						

Note 1: When placing an order, indicate kit number, and indicate stroke length at *. Note 2: For number of ③ ④ ② ② ② ② , refer to Page 6.

SRL2-Q Series

Internal structure and parts list (32 to 63 mm bore)

Parts list


No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Hexagon socket head cap screw	Steel		10	Gasket	Nitrile rubber	
2	Lock lever	Steel	Galvanizing	11	Position locking main body	Aluminum alloy	Black alumite
3	Wear ring	Acetar resin		12	Adaptor	Steel	Galvanizing
4	Piston packing seal	Nitrile rubber		13	Hexagon socket head cap screw	Steel	Blackening
5	Spring	Steel	Electrodeposition coating	14	Hexagon socket head cap screw	Steel	Blackening
6	Rod packing seal	Nitrile rubber		15	Hexagon socket head set screw	Steel	Blackening
7	Lock pin	Steel	Chrome plated	16	Hexagon nut	Steel	Blackening
8	Rod cover	Aluminum alloy		17	Adaptor nut	Steel	Blackening
9	C type snap ring for hole	Steel					

Repair parts list

opa r	our to not	
Bore size (mm)	Kit number	Repair parts number
32 dia.	SRL2-Q-32K- *	
40 dia.	SRL2-Q-40K- *	3 4 6 0 3 9
50 dia.	SRL2-Q-50K- *	30 20 20
63 dia.	SRL2-Q-63K- *	3

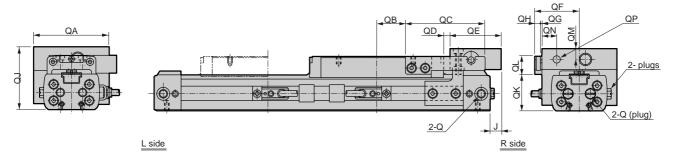
Note 1: When placing an order, indicate kit number, and indicate stroke length at *. Note 2: For part number of 3 9 2 2 2 2 3 2. refer to Page 6, 7.

Internal structure and parts list (80, 100 mm bore)

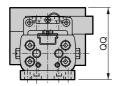
Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Hexagon socket head cap screw	Steel	Blackening	10	Gasket	Nitrile rubber	
2	Lock lever	Steel	Galvanizing	11	Position locking main body	Aluminum alloy	Black alumite
3	Wear ring	Acetar resin		12	Adaptor	Steel	Galvanizing
4	Piston packing seal	Nitrile rubber		13	Hexagon socket head cap screw	Steel	Blackening
5	Spring	Steel	Electrodeposition coating	14	Hexagon socket head cap screw	Steel	Blackening
6	Rod packing seal	Nitrile rubber		15	Hexagon socket head set screw	Steel	Blackening
7	Lock pin	Steel	Chrome plated	16	Hexagon nut	Steel	Blackening
8	Rod cover	Aluminum alloy		17	Adaptor nut	Steel	Blackening
9	C type snap ring for hole	Steel		18	Conical spring washer	Steel	

Repair parts list

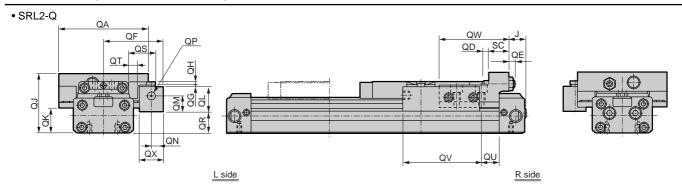

Bore size (mm)	Kit number	Repair parts number
80 dia.	SRL2-Q-80K- *	3 4 6 0 8 9
100 dia.	SRL2-Q-100K- *	49 49 49 49

36

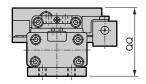

SRL2-Q Series

Dimensions (12 to 25 mm bore)

• SRL2-Q



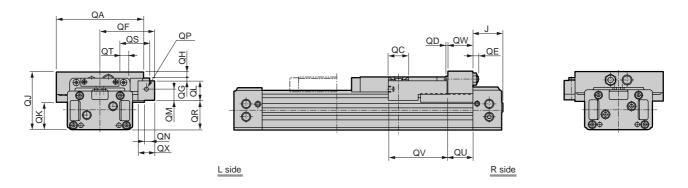
• SRL2-Q-LB1- ** - *** with foot bracket



Symbol Bore size (mm)	J	QA	QB	QC	QD	QE	QF	QG	QH	QJ	QK	QL	QM	QN	QP	QQ
12 dia.	0	45	19	46	2.5	25	27.5	1	4	40	21.5	12.5	7	9.5	M5	46
16 dia.	0	49	19	52	2.5	28	29.5	1	4	42	25	12	7	9.5	M5	48
20 dia.	-1	57	24	53	2.5	31	33.5	1	4	48	29	13	8	10.5	Rc ¹ /8	56
25 dia.	5.5	77	26	67.5	2.5	37	43.5	1	4	62.5	36	17	8	10.5	Rc ¹ /8	72.5

Dimensions (32 to 63 mm bore)

• SRL2-Q-LB1-32- *** with foot bracket



Symbol Bore size (mm)	J	QA	QD	QE	QF	QG	QH	QJ	QK	QL	QM	QN	QP	QQ	QR	QS	QT	QU	QV	QW	QX	sc
32 dia.	19.5	98	7	6	65	2	4	66.5	28	27.5	18	13	Rc ¹ /8	88.5	23.5	29	9	21	84	76	26	22
40 dia.	11.5	112	7	11	72	2	4	78.5	34	27.5	18	13	Rc ¹ /8	-	31.5	29	9	27	84	87	26	32
50 dia.	9.5	136	8	9	84	2	5	99	40	33	21.5	15	Rc ¹ /8	-	42	36	12	12.5	100	102	30	38
63 dia.	20.5	158	8	14	95	2	5	112	50	33	21.5	15	Rc ¹ /8	1	55	36	12	31.5	100	91	30	38

Double acting/position locking function

Dimensions (80, 100 mm bore)

• SRL2-Q

Symbol Bore size (mm)	J	QA	QC	QD	QE	QF	QG	QH	QJ	QK	QL	QM	QN	QP	QR	QS	QT	QU	QV	QW	QX
80 dia.	70	214	50	6	14	133	2	7	145	69	47.5	29	20	Rc ¹ /8	73.5	48	18	62	143	60	40
100 dia.	80	250	50	6	14	145	2	7	164	88	47.5	29	20	Rc ¹ /8	92.5	48	18	62	148	60	40

Rodless cylinder, double acting/resin guide type/position locking

SRL2-GQ Series

• Bore size:

12, 16, 20, 25, 32 mm bore 40, 50, 63, 80, 100 mm bore

JIS symbol

Specifications

Specifica	1110115											
Description	ıs					SRL	.2-GQ					
Bore size	mm	12 dia.	16 dia.	20 dia.	25 dia.	32 dia.	40 dia.	50 dia.	63 dia.	80 dia. 100 dia		
Actuation						Double	acting					
Specification	s fluids					Compre	ssed ai	r				
Max. working pr	essure MPa					0.	7					
Min. working pressu	re (Note 2) MPa		0.25			0.15			0	.1		
Withstanding pr	essure MPa					1.0)5					
Ambient temp	erature °C					5 to	60					
Dort size	Cylinder section	M	15	Ro	:1/8	Rc	1/4	Ro	3/8	Rc1/2		
Port size	Position locking part	M	15				Ro	1/8				
Stroke length to	lerance mm		+	^{2.0} (to 10	000)	^{+2.5} (to	3000)	+3.0 0	o 5000)			
Working piston s	speed mm/s			50 to	2000 (s	tandard	port pip	oing) (N	ote 1)			
Cushion		Air cushion										
Lubrication		Not required (turbine oil Class 1 ISOVG32 should be used. Continue to lubricate once lubricated.)										
Position locking	g mechanism		·	·	Install	ation on	cover	R side		·		
Holding force	e N				N	Лах. thru	ıst X 0.	7				

- Note 1. (1) When operating with 500 to 2000mm/s speed, rush speed for position locking mechanism should be 500mm/sor less. For common port pipe, working piston speed varies depending on stroke length. Consult with CKD.
 - (2) For deceleration method, install an external shock absorber or a deceleration circuit etc.
 - (3) Apply grease to sliding section of lock lever periodically.
- Note 2 For low pressure specifications "LP" (12 to 20mm), 0.15MPa.

Allowable energy absorption

Bore size (mm) Cushioned No cushion With shock absorber (initial set value) Allowable energy absorption (J) Cushion stroke length (mm) Allowable energy absorption (J) Effective stroke length (mm) 12 dia. 0.03 14.5 0.003 2.4 5.5 16 dia. 0.22 19.2 0.007 2.4 5.5 20 dia. 0.59 22.2 0.010 5.7 7 25 dia. 1.40 20.9 0.015 10 9 32 dia. 2.57 23.5 0.030 18 13 40 dia. 4.27 23.9 0.050 50 16.5 50 dia. 9.13 24.9 0.072 86 21 63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25 100 dia. 67 45.8 0.622 143 25	Allowas	ne energy	absorptic	/11		
12 dia. 0.03 14.5 0.003 2.4 5.5 16 dia. 0.22 19.2 0.007 2.4 5.5 20 dia. 0.59 22.2 0.010 5.7 7 25 dia. 1.40 20.9 0.015 10 9 32 dia. 2.57 23.5 0.030 18 13 40 dia. 4.27 23.9 0.050 50 16.5 50 dia. 9.13 24.9 0.072 86 21 63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25		Cush	ioned	No cushion	With shock absorb	er (initial set value)
16 dia. 0.22 19.2 0.007 2.4 5.5 20 dia. 0.59 22.2 0.010 5.7 7 25 dia. 1.40 20.9 0.015 10 9 32 dia. 2.57 23.5 0.030 18 13 40 dia. 4.27 23.9 0.050 50 16.5 50 dia. 9.13 24.9 0.072 86 21 63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25	(mm)	Allowable energy absorption (J)			Absorbed energy (J)	Effective stroke length (mm)
20 dia. 0.59 22.2 0.010 5.7 7 25 dia. 1.40 20.9 0.015 10 9 32 dia. 2.57 23.5 0.030 18 13 40 dia. 4.27 23.9 0.050 50 16.5 50 dia. 9.13 24.9 0.072 86 21 63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25	12 dia.	0.03	14.5	0.003	2.4	5.5
25 dia. 1.40 20.9 0.015 10 9 32 dia. 2.57 23.5 0.030 18 13 40 dia. 4.27 23.9 0.050 50 16.5 50 dia. 9.13 24.9 0.072 86 21 63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25	16 dia.	0.22	19.2	0.007	2.4	5.5
32 dia. 2.57 23.5 0.030 18 13 40 dia. 4.27 23.9 0.050 50 16.5 50 dia. 9.13 24.9 0.072 86 21 63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25	20 dia.	0.59	22.2	0.010	5.7	7
40 dia. 4.27 23.9 0.050 50 16.5 50 dia. 9.13 24.9 0.072 86 21 63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25	25 dia.	1.40	20.9	0.015	10	9
50 dia. 9.13 24.9 0.072 86 21 63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25	32 dia.	2.57	23.5	0.030	18	13
63 dia. 17.4 29.6 0.138 86 21 80 dia. 40 45.8 0.393 143 25	40 dia.	4.27	23.9	0.050	50	16.5
80 dia. 40 45.8 0.393 143 25	50 dia.	9.13	24.9	0.072	86	21
	63 dia.	17.4	29.6	0.138	86	21
100 dia. 67 45.8 0.622 143 25	80 dia.	40	45.8	0.393	143	25
	100 dia.	67	45.8	0.622	143	25

Stroke length

Bore size (mm)	Standard stroke length (mm)	Max. stroke length (mm)	Min. stroke length (mm)
12 dia.			The value may
16 dia.			The value may
20 dia.			vary depending
25 dia.	200, 300		on switch model
32 dia.	400, 500		No. and
40 dia.	600, 700	5000	installation
	800, 900		quantity.
50 dia.	1000		(Refer to the
63 dia.			below table
80 dia.			20.011 102.0
100 dia.			about details.)

M type switch installation quantity and minimum stroke length (mm)

• Custom stroke length is available per 1 mm increment.

w typo ownon motane	tion quality and minimum stroke length (min)																	
Switch quantity	•	1	2	2	(3	4	1	5	5	(3	7	7	3	3	9	9
Switch model No.	N/ * \/	M * L	M * \/	M * L	M * \/	М*Ц	M * \/	M * L	M * \/	М*Ц	M * \/	M * H						
Bore size (mm)	IVI V	IVI II	IVI V	IVI II	livi v	IVI II	IVI V	IVI II	IVI V	IVI II	IVI V	IVI II	IVI V	livi II	IVI V	IVI II	IVI V	IVI II
12 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
16 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
20 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
25 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
32 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
40 dia.	10	10	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
50 dia.	15	15	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
63 dia.	15	15	30	45	60	90	90	135	120	180	150	225	180	270	210	315	240	360
80 dia.	2	25	5	0	10	00	1:	50	20	00	2	50	3	00	3	50	40	00
100 dia.	2	5	5	0	10	00	1:	50	20	00	2	50	3	00	3	50	40	00

T type switch installation quantity and minimum stroke length (mm)

,				-,						. 9	(٠,						
Switch quantity		1	2	2	;	3	، ا	4	5	5	6	3	-	7	{	3	9	9
Switch model No.	T+V+V	T+V+11	T+V+V	T+V+11	T+V+V	T + V + II	T+V+V	T+V+11	T + V + V	T + V + II	T+V+V	T + V + II	T+V+V	T+V+II	T+V+V	T+V+11	T+V+V	T+V+II
Bore size (mm)] - 1 - 4		I = I = V	1 - 1 - 1	1 - Y - V	1 - Т - П	1 - 1 - V	1	I - I - V	1 - 1 - 1	1 " T " V	1 - 1 - п	1 " T " V	1 1 1	1 " 1 " V	1	1 " 1 " V	T*Y*H
12 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
16 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
20 dia.	5	5	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
25 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
32 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
40 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
50 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
63 dia.	10	10	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
80 dia.	15	15	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400
100 dia.	15	15	45	50	90	100	135	150	180	200	225	250	270	300	315	350	360	400

Specifications

Switch specifications

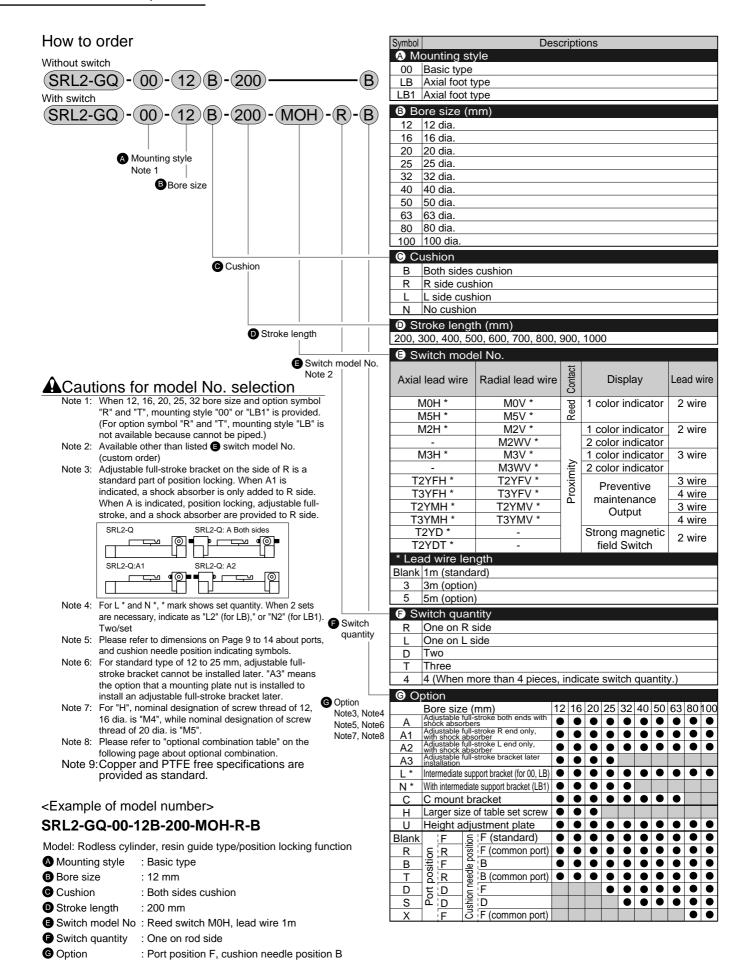
One color/bi-color indicator

	Proximi	ty 2 wire	Proximit	y 3 wire							
Descriptions	M2V, M2H	M2WV (2 color indicator)	M3V, M3H	M3WV (2 color indicator)							
Applications	Programmal	ole controller	Programmable controller, relay, IC circuit, small solenoid valve								
Power voltage		-	DC4.5 to 28V	DC10 to 28V							
Load voltage	DC10	to 30V	DC30V or less	DC30V or less							
Load current	5 to 3	30mA	200mA or less	150mA or less							
Light	LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Red/green LED (ON lighting)							
Descriptions			Reed 2 wire								
Descriptions	M0V,	M0H	M5V, M5H								
Applications	Programmable	controller, relay	Programmable controller, relay, IC circuit	(without indicator light), serial connection							
Power voltage		=									
Load voltage	DC12/24V	AC110V	DC5/12/24V	AC110V or less							
Load current	5 to 50mA	7 to 20mA	50mA or less	20mA or less							
Light	LED (ON	l lighting)	Without indicator light								

Note 1: For MO * switch, if load current range is within 7 to 20mA, this switch can be used with AC24V and AC48V.

• With preventive maintenance output

Doo	criptions	Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire				
Desi	Сприонъ	T2YF H/V	T3YF H/V	T2YM H/V	T3YM H/V				
Applications		Programmable controller	Programmable controller, relay	Programmable controller	Programmable controller, relay				
Light	Installation position adjustment		Red/green LEI	O (ON lighting)					
Ë	Preventive maintenance output		-	Yellow LED	(ON lighting)				
	Power voltage	-	DC10 to 28V	-	DC10 to 28V				
	Load voltage	DC10 to 30V	DC30V	DC10 to 30V	DC30V or less				
thd:	Load current	DC5 to 20mA	DC50mA or less	DC5 to 20mA	DC50mA or less				
Output	Internal voltage drop	4V or less	0.5V or less	4V or less	0.5V or less				
	Current consumption	-	10mA or less	-	10mA or less				
	Leakage current	1mA or less	10 micron A or less	1.2mA or less	10 micron A or less				
nce	Load voltage		DC30V	or less					
tena	Load current	DC20mA or less	DC50mA or less	DC5 to 20mA	DC50mA or less				
naini put	Internal voltage drop	0.5V	or less	4V or less	2.4V or less				
ve n	Leakage current		10 micron	A or less					
Preventive maintenance output	Signal holding (Ton)	-	-	0.4 ±0.2sec after installation position adjustment red LED turned					
Pre	Signal release (Toff)	-	-	0.7 ±0.2sec after installation posit	ion adjustment red LED turned on.				


Strong magnetic field

Deceriptions	Proximity 2 wire
Descriptions	T2YD
Applications	Programmable controller
Light	Red/green LED (ON lighting)
Load voltage	DC24V ±10%
Load current	5 to 20mA
Internal voltage drop	6V or less
Leakage current	1.0mA or less

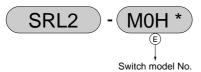
Cylinder mass

Cyllinder mass					Unit: kg
	Mass v	when stro	oke lengt	h 0mm	Additional
Bore size (mm)	Basic type	Foot	type	Mass per switch	mass per
	(00)	(LB)	(LB1)	(including bracket.)	St = 100mm
12 dia.	0.38	0.25	0.26		0.10
16 dia.	0.47	0.33	0.35		0.13
20 dia.	0.74	0.54	0.58		0.18
25 dia.	1.5	1.6	1.1		0.30
32 dia.	2.4	2.5	1.7	0.02	0.39
40 dia.	3.6	3.7	-	0.02	0.56
50 dia.	6.1	6.2	-		0.78
63 dia.	8.9	9.2	-		1.17
80 dia.	22.4	23.0	-		2.32
100 dia.	31.5	31.5	-		3.38

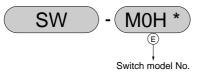
SRL2-GQ Series

Optional combination table •: Combination available :: Combination not available

		•	. (,0111	vii ia	tion	ava	liabli	_	. 00	טוווט	ıııaıı	UIII	iot a	vaila	DIE
								0	ptic	n						
		Adjustable full-stroke both sides, shock absorber	Adjustable full-stroke R end only, with shock absorber	Adjustable full-stroke L end only, with shock absorber	Adjustable full-stroke bracket later installation		Z Intermediate support bracket (LB1)	Select larger size of table set screw	Height adjustment plate	Port position F, cushion needle position F (standard)	Port position R, cushion needle position F (common port)	Port position F, cushion needle position B	Port position R, cushion needle position B (common port)	Port position D, cushion needle position F	Port position D, cushion needle position D	lacktriangle $lacktriangle$ $lacktriangl$
	Symbol	Α	A1	A2	A3	L*	N *	Н	U	Blank	R	В	Т	D	S	Χ
	Α					•		•	•	•	•	•	•	•	•	
	A1					•		•	•	•	•	•	•	•		
	A A1 A2 A3 L* N* H					•	•	•	•	•	•	•	•	•	•	
	А3						•	•	•	•	•	•	•	•	•	
	L *							•	•	•	•	•	•	•		
_	N *								•	•	•	•	•	•	•	
Option	Н							\setminus		•	•	•	•	•	•	
d	U										•	•	•	•	•	
	Blank															
	R B T D										\geq					
	В															
	Т															
	S															
	X															


Note 1: Some combination is impossible depending on bore size. Confirm the conditions of options of "how to order" on the previous page. Note 2: When port position D, LB1 is not available. (25, 32 mm bore)

SRL2-GQ Series


How to order switch


(Please refer to Page Ending 9 to 11 about components.)

• Switch main body + mounting bracket (Note 1)

· Switch only

^{*} mark indicates lead wire length.

• Mounting bracket (Note 2)

• M type switch

• T type switch

Note: M type switch bracket is different from T type switch.

• Lead wire holder (Note 3)

Note 1. Switch main body + mounting bracket set doesn't include any lead wire holder. When a lead wire holder is necessary, place an order separately.

Note 2. M type switch bracket is different from T type switch.

Note 3. Lead wire holder is 10 pieces/set.

• How to order discrete shock absorber

(One shock absorber, one shock absorber fixing hex. nut)

(Note) Shock absorber fixing hex. nut for SRL2- 40 is a custom part.

Applicable shock absorber model No.

Model	Shock absorber model No.
SRL2-12	NCK-0.3-C
SRL2-16	NCK-0.3-C
SRL2-20	NCK-0.7-C
SRL2-25	NCK-1.2
SRL2-32	NCK-2.6
SRL2-40	NCK-7
SRL2-50	NCK-12
SRL2-63	NCK-12
SRL2-80	NCK-20
SRL2-100	NCK-20

• How to order discrete intermediate support bracket LB

How to order adjustable full-stroke kit

How to order repair parts

• How to order mounting bracket

(Two brackets, 4 mounting bolts)

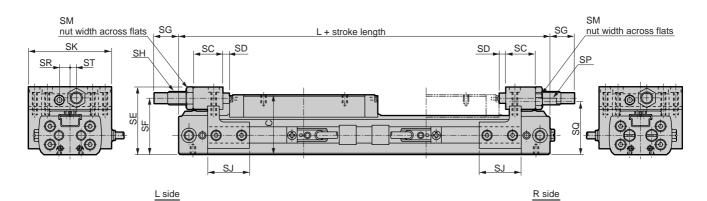
• How to order height adjustment plate set

(Plate, 4 mounting bolts)

Internal structure and parts list

For SRL2-G series, refer to Page 20 to 22, while for SRL2-Q series, refer to Page 34 to 36 about internal structure drawing and parts list.

Repair parts list

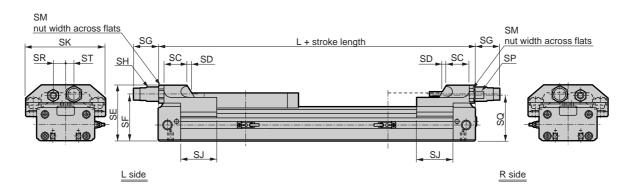

Bore size (mm)	Kit number	Repair parts number
12 dia.	SRL2-GQ-12K- *	
16 dia.	SRL2-GQ-16K- *	
20 dia.	SRL2-GQ-20K- *	
25 dia.	SRL2-GQ-25K- *	00000
32 dia.	SRL2-GQ-32K- *	3 9 W 20 22 23 23
40 dia.	SRL2-GQ-40K- *	(According to part number on Page 6, 7).
50 dia.	SRL2-GQ-50K- *	
63 dia.	SRL2-GQ-63K- *	
80 dia.	SRL2-GQ-80K- *	8 0 6 0 0
100 dia.	SRL2-GQ-100K- *	(According to part number on Page 8).

Dimensions

For SRL2-G series, please refer to Page 23 to 28. For SRL2-Q series, please refer to Page 37 to 38.

SRL2 series common dimensions: With options (12 to 25 mm bore)

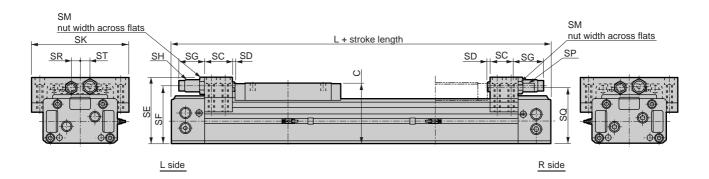
With adjustable full-stroke shock absorber (SRL2)


Symbol	SC	CD.	SE	C.E.		SG		SH		SJ	CI/	CM	CNI	CD.	60	SR	СТ	С	
Bore size (mm)	SC	SD	SE	SF	MAX time		Adjust. width	Screw diameter	Max. energy absorb J	21	on	SIVI	SIN	5P	SQ	SK	31	C	L
12 dia.	19.5	2.5	40	32	17.5	7.5	10	M8 X 0.75	3	25	45	12	5.5	МЗ	30.5	6	3	33	136
16 dia.	18	4	42	35	14.5	4.5	10	M8 X 0.75	3	25	49	12	5.5	МЗ	34	6	4	37	149
20 dia.	22.5	3.5	48	40	14.5	4.5	10	M10 X 1.0	7	39	57	14	7	M4	38	8	5	42	169
25 dia.	20	2.5	62.5	51.5	14.5	4.5	10	M12 X 1.0	12	50	77	17	10	M6	50	12	10	53	190

SRL2 series common optional dimensional drawing

SRL2 series common dimensions: With options (32 to 63 mm bore)

With adjustable full-stroke shock absorber (SRL2)

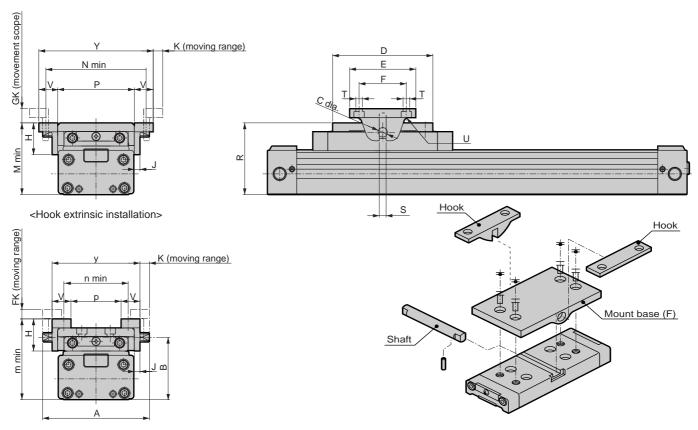


Symbol	60	CD.	C.E.	C.E.		SG		S	Н	6.1	CI/	CM	CNI	CD.	20	CD.	СТ	С	
Bore size (mm)	SC	SD	SE	SF	MAX time	MIN time	Adjust. width	Screw diameter	Max. energy absorb J	SJ	SN	SIVI	SIN	51	SQ	SR	51	C	L
32 dia.	22	7	66.5	55.5	27	17	10	M14 X 1.5	26	46	98	19	13	M8	53.5	14	12	57	226
40 dia.	32	7	78.5	65.5	34	24	10	M20 X 1.5	70	51	112	24	17	M10	63.5	17	12	67	244
50 dia.	38	8	99	80	55	45	10	M25 X 1.5	120	53	136	32	19	M12	77.5	22	17	82	258
63 dia.	38	8	112	93.5	44	34	10	M25 X 1.5	120	64	158	32	24	M16	89	25	20	95	296

SRL2 Series

SRL2 series common dimensions: With options (80 to 100 mm bore)

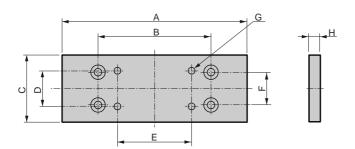
Adjustable full-stroke shock absorber



Symbol	00	SD SE SF SG SI		Н	CIC	CNA	CNI	CD	00	CD	СТ							
Bore size (mm)	SC	סט	SE	5F	MAX			Screw diameter	Max. energy absorb J	SK	SM	SIN	51	SQ	SK	51	С	_
80 dia.	60	6	145	125.5	50	40	10	M27 X 1.5	200	214	32	27	M20	123	20	20	130	500
100 dia.	60	6	164	144.5	50	40	10	M27 X 1.5	200	250	32	27	M20	142	20	20	150	530

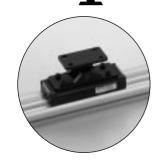
SRL2 series common optional dimensional drawing

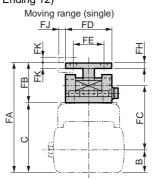
Dimensions: With options


• Thin type floating joint (Y1) 12 to 63 mm bore

<hook< td=""><td>intrinsic</td><td>installation></td></hook<>	intrinsic	installation>

Symbol Port size	Α	В	С	D	Е	F	G	Н	J	K	FK	GK	M min	m min	N min	n min	Р	р	S	٧	Υ	у	Т	U
12 dia.	52	32	5	60	40	30	5	20	3	6	6	9	38	43	47.5	26.5	34	16	3.5	12	58	40	3.4 dia.	6.5 dia. spot face depth 3.3.
16 dia.	56	36.5	5	60	40	30	5	20	3	6	6	0	42	47	51.5	30.5	38	20	3.5	12	62	44	3.4 dia.	6.5 dia. spot face depth 3.3.
20 dia.	64	41	6	84	56	40	8	24.5	4	6	6	9	48.5	56.5	62	34	44	22	4	15	74	52	4.5 dia.	8 dia. spot face depth 4.4
25 dia.	74	53	6	84	56	40	8	24.5	4	6	6	9	60.5	68.5	72	44	54	32	4	15	84	62	5.5 dia.	9.5 dia. spot face depth 5.4.
32 dia.	99	56.5	8	106	70	50	9.5	34	6	10	10	15	66	75.5	92	54	67	39	5.5	20	107	79	6.6 dia.	11 dia. spot face depth 6.5.
40 dia.	113	66	10	116	70	50	9.5	34	6	10	10	15	76	85.5	106	68	81	53	7	20	121	93	6.6 dia.	11 dia. spot face depth 6.5.
50 dia.	133	81	12	120	90	70	13	43	8	10	10	15	93	106	129	81	97	63	8.5	25	147	113	9 dia.	14 dia. spot face depth 8.6.
63 dia.	155	94	14	136	90	70	13	43	8	10	10	15	107	120	151	103	119	85	10	25	169	135	9 dia.	14 dia. spot face depth 8.6.

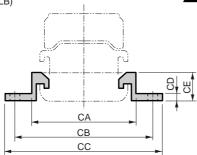

• Height adjustment plate

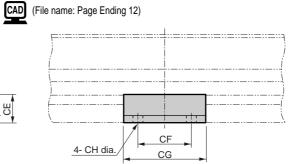


Symbol Port size	Α	В	С	D	Е	F	G	Н
12 dia.	80	42	29	16	30	13	4-M3 pene.	8
16 dia.	87	48	32	16	30	15	4-M3 pene.	6
20 dia.	99	60	38	20	40	18	4-M4 pene.	7
25 dia.	121	70	48	20	40	20	4-M5 pene.	10.5
32 dia.	134	80	56	30	50	20	4-M6 pene.	10.5
40 dia.	147	90	68	30	50	30	4-M6 pene.	12.5
50 dia.	151	100	80	40	70	30	4-M8 pene.	18
63 dia.	167	110	102	40	70	40	4-M8 pene.	18
80 dia.	227	150	146	50	90	50	4-M12 pene.	18
100 dia.	237	160	170	60	110	60	4-M12 pene.	18

SRL2 series common dimensions: With options

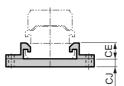
4- Fl dia. FG FF

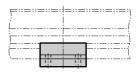

Symbol Bore size (mm)	FA	FB	FC	FD	FE	FF	FG	FH	FI	FJ	FK	В	С
12 dia.	54	21	31.5	24	16	30	40	3	3.4	3	3	10.5	33
16 dia.	58	21	34	24	16	30	40	3	3.4	3	3	12	37
20 dia.	67	25	39	30	20	40	56	4	4.5	3	3	14	42
25 dia.	78	25	47	30	20	40	56	4	6	3	3	17	53
32 dia.	95	38	55.5	45	30	50	70	6	7	5	5	18.5	57


Symbol Bore size (mm)	FA	FB	FC	FD	FE	FF	FG	FH	FI	FJ	FK	В	С
40 dia.	105	38	62	45	30	50	70	6	7	5	5	22	67
50 dia.	126	44	73	60	40	70	90	8	9	5	5	28	82
63 dia.	139	44	79	60	40	70	90	8	9	5	5	35	95
80 dia.	188	58	107	80	50	90	120	11	14	10	5	49	130
100 dia.	220	70	120.5	90	60	110	140	13	14	10	5	61.5	150

 \bullet Intermediate support bracket (this bracket is an auxiliary bracket to prevent deflection.) L * (LB)

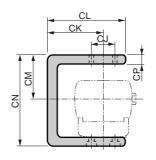
L * (L

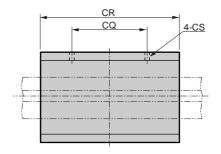




Symbol Bore size (mm)	CA	СВ	СС	CD	CE	CF	CG	СН	CJ	СК
12 dia.	38	52	60	3	11	16	30	4	6	17
16 dia.	42	56	64	3	12	20	35	4	6	18
20 dia.	49	64	75	4	14	20	38	5	8	22
25 dia.	60	76	88	6	19.5	20	40	7	10	29.5
32 dia.	74	88	100	6	21.5	20	40	7	10	31.5
40 dia.	90	108	124	6	24.5	30	60	9	-	-
50 dia.	106	124	140	8	30.5	30	60	9	ı	-
63 dia.	130	152	172	10	38.5	50	90	11	ı	-
80 dia.	172	210	236	12	32	60	110	14	ı	-
100 dia.	208	246	272	12	32	60	110	14	-	-

N * (LB1)




L * (LB) N * (LB1)

• C mount bracket

(File name: Page Ending 12)

Symbol Bore size (mm)	CJ	СК	CL	СМ	CN	СР	CQ	CR	cs
12 dia.	13	27	40	22.5	50	5	42	81	МЗ
16 dia.	15	35.5	50	29	60	6	48	88	МЗ
20 dia.	18	32.5	50	26	60	6	60	100	M4
25 dia.	20	45	69	28	71	5	70	116	M5

Symbol Bore size (mm)	CJ	СК	CL	СМ	CN	СР	cq	CR	cs
32 dia.	20	54	81.5	33.5	80	7	80	128	M6
40 dia.	30	63	95.5	38	91.5	8	90	138	M6
50 dia.	30	74	113	48	112.5	10	100	142	M8
63 dia.	40	88	138	58	131	13	110	158	M8

Rodless cylinder SRL2-J series

Full Cowling (With Dust-proof Cover)

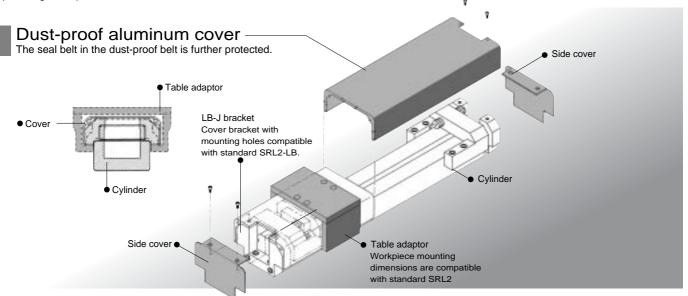
Dust-proof properties powerful in adverse environments.

(25 to 63 mm bore)

No more worry about direct contact with spatter, metal chips, or cutting lubricants.

PAT.PEND

Overview


A new option with powerful dust-proof properties has been added to the rodless cylinder SRL2 Series. By mounting an original metal cover on the standard type, the product can be used safely without direct contact from spatter, metal chips, coolant, or cutting lubricants.

Features

- Industry's first rodless type with dust-proof cover
- Even with dust-proof structure, total length and installation dimensions are the same as conventional products
- Aluminum cover resistant to spatter adherence
- Cover removable from top with just one wrench
- · Simple, neat design with side covers on both ends
- Five sizes from 25 to 63 mm bore

Example of application

- Possible contact with coolant and cutting lubricants from machines, etc.
- Possible contact with metal chips from metal processing machines, etc.
- Spatter from welding machines, etc.
- Where cleanliness is required, such as in food processing
- Other places with adverse environments where dustproofing is required

Rodless cylinder, double acting/full cowling type

SRL2-J Series

• Bore size: 25, 32, 40, 50, 63 mm

Specifications

Descriptions			SRL2-J						
Bore size mr	n 25 dia.	25 dia. 32 dia. 40 dia. 50 dia. 63 dia.							
Actuation			Double acting						
Working fluid			Compressed air						
Max. working pressure MP	а		0.7						
Min. working pressure MP	а	0.1 0.05							
Withstanding pressure MP	а		1.05						
Ambient temperature °			5 to 60						
Port size	Rc1/8	Rc1	/4	Rc	3/8				
Stroke length tolerance mi	n	+2.0	(to 1000), +2.5(to 30	000)					
Working piston speed mm	s	50 to 2000 (standard port piping) (Note 1)							
Cushion		Air cushion							
Lubrication	Not required (when	lot required (when lubrication, use turbine oil Class 1 ISO VG 32. Continue to lubricate once lubricated.							

Note 1: Working piston speed, when using with common port piping, may vary depending on stroke length. Consult with CKD.

Allowable energy absorption

Bore size	Cush	ioned	No cushion	With shock absorber (initial set va		
(mm)	Allowable energy absorption (J)	Cushion stroke length (mm)	Allowable energy absorption (J)	Absorbed energy (J)	Effective stroke length (mm)	
25 dia.	1.40	20.9	0.015	10	9	
32 dia.	2.57	23.5	0.030	18	13	
40 dia.	4.27	23.9	0.050	50	16.5	
50 dia.	9.13	24.9	0.072	86	21	
63 dia.	17.4	29.6	0.138	86	21	

Stroke length

Equivalent bore size	Standard stroke length (mm)	Max. stroke length (mm)	Min. stroke length (mm)
25 dia./32 dia./40 dia. 50 dia./63 dia.	200/300/400/ 500/600/700/ 800/900/1000	3000	The value may vary depending on switch model No. and installation quantity. Please refer to Page 1488 about details.

Note 1: If stroke length more than 3000 mm stroke is required, consult with CKD.

Note 2: Custom stroke is available per 1 mm increment.

Cylinder mass

Cylinder mass			(kg)					
Descriptions	criptions Mass when stroke length 0mm							
Equivalent bore size	Basic type	Mass per switch (not including bracket)	stroke length = 100mm					
25 dia.	2.37		0.39					
32 dia.	3.34		0.49					
40 dia.	4.78	0.02	0.68					
50 dia.	7.33		0.93					
63 dia.	11.37		1.34					

Switch specifications • One color/bi-color indicator

Descriptions	Proximit	y 2 wire	Proximit	y 3 wire			
Descriptions	M2V, M2H	M2WV (2 color indicator)	M3V, M3H	M3WV (2 color indicator)			
Applications	Programmal	ole controller	Programmable controller, relay,	IC circuit, small solenoid valve			
Power voltage			DC4.5 to 28V	DC10 to 28V			
Load voltage	DC10	to 30V	DC30V or less	DC30V or less			
Load current	5 to 3	80mA	200mA or less	150mA or less			
Light	LED (ON lighting) Red/green LED (ON lighting)		LED (ON lighting)	Red/green LED (ON lighting)			
Descriptions			Reed 2 wire				
Descriptions	MOV	, MOH	M5V, M5H				
Applications	Programmable	controller, relay	Programmable controller, relay, IC circuit	(without indicator light), serial connection			
Power voltage			-				
Load voltage	DC12/24V	AC110V	DC5/12/24V	AC110V			
Load current	5 to 50mA 7 to 20mA		50mA or less	20mA or less			
Light	LED (O	N lighting)	Without indicator light				

Note 1: For MO * switch, if load current range is within 7 to 20mA, this switch can be used with AC24V and AC48V.

• With preventive maintenance output

Descriptions		Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire	
		T2YF H/V	T3YF H/V	T2YM H/V	T3YM H/V	
Applications		Programmable controller	Programmable controller, relay	Programmable controller	Programmable controller, relay	
Light	Installation position adjustment	Red/green LED (ON lighting)				
	Preventive maintenance output		-	Yellow LED (ON lighting)		
	Power voltage	=	DC10 to 28V	=	DC10 to 28V	
	Load voltage	DC10 to 30V	DC30V	DC10 to 30V	DC30V or less	
Output	Load current	DC5 to 20mA	DC50mA or less	DC5 to 20mA	DC50mA or less	
	Internal voltage drop	4V or less	0.5V or less	4V or less	0.5V or less	
	Current consumption	=	10mA or less	=	10mA or less	
	Leakage current	1mA or less	10 micron A or less	1.2mA or less	10 micron A or less	
Preventive maintenance output	Load voltage	DC30V or less				
	Load current	DC20mA or less	DC50mA or less	DC5 to 20mA	DC50mA or less	
	Internal voltage drop	0.5V or less		4V or less	2.4V or less	
	Leakage current	10 micron A or less				
	Signal holding (Ton)	=	-	0.4 \pm 0.2sec after installation position adjustment red LED turned on.		
Pre	Signal release (Toff)	-	-	$0.7 \pm 0.2 sec$ after installation position adjustment green LED turned on.		

• Strong magnetic field

Descriptions	Proximity 2 wire		
Descriptions	T2YD		
Applications	Programmable controller		
Light	Red/green LED (ON lighting)		
Load voltage	DC24V ±10%		
Load current	5 to 20mA		
Internal voltage drop	6V or less		
Leakage current	1.0mA or less		

• Cutting oil

Descriptions	Proximity 2 wire	Proximity 3 wire		
Descriptions	T2YLH, T2YLV	T3YLH, T3YLV		
Applications	Programmable controller	Programmable controller, relay		
Power voltage	-	DC10 to 28V		
Load voltage/current	DC10 to 30V 5 to 20mA	DC30V or less 50mA or less		
Current consumption	-	10mA or less at DC24V (at ON state)		
Internal voltage drop	4V or less	0.5V or less		
Leakage current	1mA or less	10 micron A or less		
Light	Red/green LED (ON lighting)			

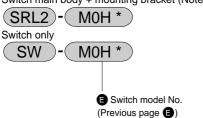
SRL2-J Series

How to order Symbol Descriptions Without switch A Mounting style (00)-(25)(B)-(200) SRL2-J 25 | 32 | 40 | 50 | 63 Bore size (dia.) 00 With switch Basic type lacktriangleLJ Axial foot type (common porting) (00)-(25)(B)-(200)-(M0H)-(R)-(B) SRL2-J **B** Bore size B Bore size 25 25 dia. 32 dia. 32 40 40 dia. 50 dia. 50 63 63 dia. A Mounting style Cushion Cushion B Both sides cushion R R side cushion L side cushion Ν No cushion Stroke length (mm) Stroke length 200, 300, 400, 500, 600, 700, 800, 900, 1000 Switch model No. Switch model No. Lead Note 1 Axial lead wire Radial lead wire Display wire M0H * MOV * 1 color indicator 2 wire M5V * M5H * M2V * M2H * 1 color indicator 2 wire M2WV * 2 color indicator M3H * M3V * 1 color indicator 3 wire M3WV * 2 color indicator T2YFH * T2YFV * 3 wire With preventive T3YFH * T3YFV * 4 wire maintenance T2YMH * T2YMV * 3 wire output T3YMH * T3YMV* 4 wire A Cautions for model No. selection Strong magnetic T2YD * 2 wire Note 1: Available other than listed switch model No. T2YDT * field proof switch (custom order) T2YLV * T2YLH * 2 wire Cutting oil switch Note 2: For 25 mm bore standard type, adjustable full-stroke T3YLH T3YLV 2 wire bracket cannot be installed later. "A3" is an option _ead wire length that mounting plate nuts are installed for installing a Blank 1m (standard) adjustable full-stroke bracket later. 3m (option) Note 3: For L * and N *, * mark shows set quantity. When 2 5 5m (option) sets are necessary, indicate as "L2" (for 00), or "N2" Switch quantity (for LJ). Two/set. Switch One on R side R Note 4: Please refer to dimensions on Page 59 to 65 about quantity One on L side ports, and cushion needle position indicating Two D symbols. Т Three Note 5: When installing a joint and a flow control valve, we 4 4 (when more than 4 switches, indicate switch quantity) recommend to use the extension joints attached. Please refer to Page 66 about model **©** Option/accessory **G** Option No./dimensions Bore size (dia.) 32 | 40 | 50 | 63 25 Accessory Note 6: When using common port (R side port), remove the Α Adjustable full-stroke both ends with shock absorbers • • • Note 2 side cover before using. Adjustable full-stroke R end only, with shock absorber Note 3 A1 Note 4 A2 Adjustable full-stroke L end only, with shock absorber • • <Example of model number> Adjustable full-stroke bracket later installation А3 SRL2-J-00-25B-200-M0H-R-B Floating joint Υ L* Intermediate support bracket (00) lacktriangle \bullet A Mounting style : Basic type N * With intermediate support bracket (LJ) B Bore size : 25mm F (standard) Blank F Cushion : Both sides cushion R R • B (common port) t positi Stroke length · 200mm B Switch model No : Reed MOH Т • Cushion r 절 D Switch quantity : One on R side

S

: Port position F, cushion needle position B

D


G Option

How to order

How to order switch

(Please refer to Page Ending 9 to 11 about components.)

Switch main body + mounting bracket (Note 1)

Mounting bracket (Note 2)

(SRL2)- M

(SRL2)- T

Lead wire holder (Note 3)

(SRL2)- MH

Note 1: Switch main body + mounting bracket doesn't include a lead wire holder. When a lead wire holder is necessary, placing an order separately.

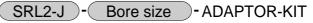
Note 2: M type switch bracket is different from T type switch.

Note 3: Lead wire holder is 10 pieces/set.

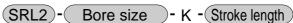
How to order discrete shock absorber

How to order cover kit

SRL2-J - Bore size


- Stroke length - COVER-KIT

(One shock absorber, one shock absorber fixing hex. nut) (Note) Shock absorber fixing hex. nut for SRL2- 40 is a custom part.


Applicable shock absorber model No.

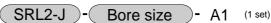
• •			
Model No.	Apply shock absorber.		
SRL2-J-25	NCK-00-1.2		
SRL2-J-32	NCK-00-2.6		
SRL2-J-40	NCK-00-7		
SRI 2-J-50/63	NCK-00-12		

How to order adaptor kit

How to order repair parts

Please refer to Page 5 to 8 about details of repair parts.

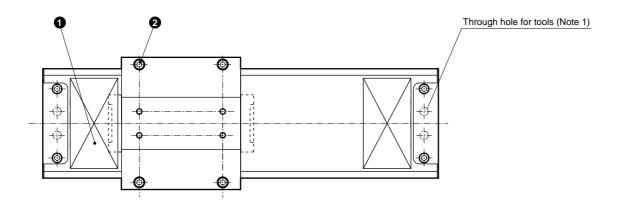
How to order floating joint set

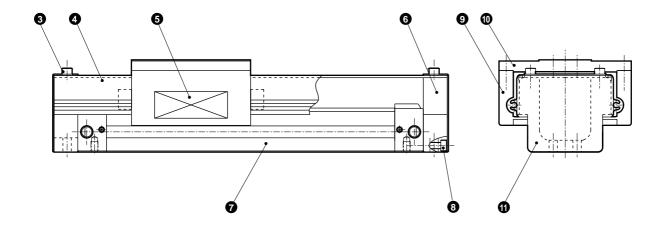

(Mount, mount base, pin, plain washer, pan head machine screw 4 mounting bolts with spring washer)

How to order discrete intermediate support bracket

(SRL2)- Bore size - N (2 pieces/set)

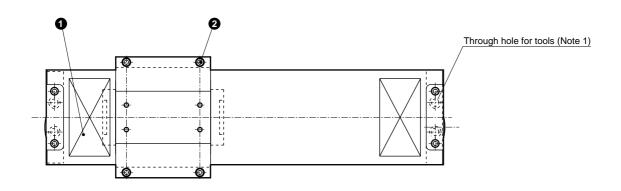
How to order adjustable full-stroke kit

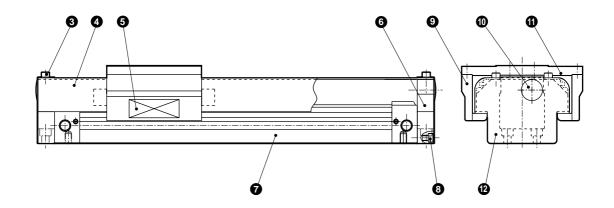

Please refer to Page Ending 10 about components tables.


How to order mounting bracket

(Two brackets, 4 mounting bolts)

Internal structure and parts list (25 mm bore)


Note 1: When installing the product, remove the side cover at first. Then using this hole, tighten the bolt with a hexagonal wrench.

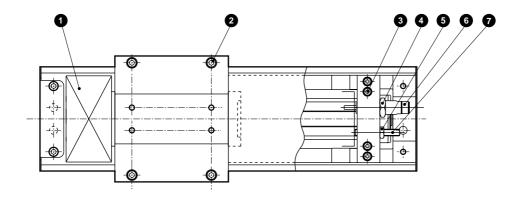

Note 2: When shipping, extension joints (two pcs.) are attached.

Parts list

Tarto not							
No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Caution plate (Do not step.)	Polypropylene		7	Main body		<u> </u>
2	Hexagon socket head cap screw	Stainless steel		8	Hexagon socket head cap screw	Steel	<u> </u>
3	Hexagon socket head cap screw	Stainless steel		9	Table adaptor	Aluminum alloy	Alumite
4	Cover	Aluminum alloy	Alumite	10	Table plate	Aluminum alloy	Alumite
5	Caution plate (pinch caution)	Polypropylene		11	Side cover	Aluminum alloy	Alumite
6	LB-J bracket	Aluminum alloy	Alumite				

[•] For internal structure and repair parts list of main body, as same as standard type SRL2 series. Please refer to Page 6 to 8.

Note 1: When installing the product, remove the side cover at first. Then using this hole, tighten the bolt with a hexagonal wrench.

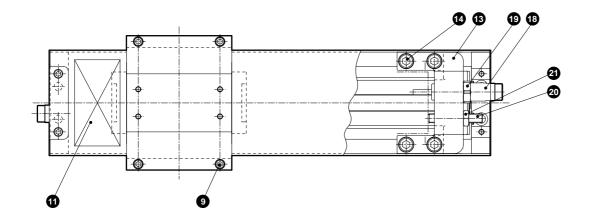

Note 2: When shipping, extension joints (two pcs.) are attached.

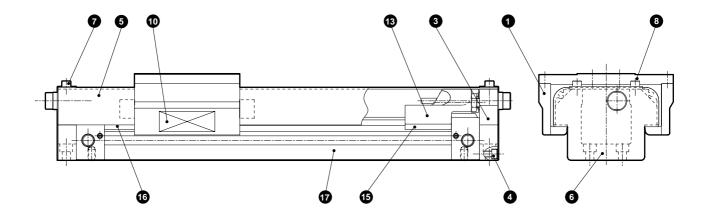

Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Caution plate (Do not step.)	Polypropylene		7	Main body		
2	Hexagon socket head cap screw	Stainless steel		8	Hexagon socket head cap screw	Steel	
3	Hexagon socket head cap screw	Stainless steel		9	Table adaptor	Aluminum alloy	Alumite
4	Cover	Aluminum alloy	Alumite	10	Hole plug	66 nylon	
5	Caution plate (pinch caution)	Polypropylene		11	Table plate	Aluminum alloy	Alumite
6	LB-J bracket	Aluminum alloy	Alumite	12	Side cover	Aluminum alloy	Alumite

[•] For internal structure and repair parts list of main body, as same as standard type SRL2 series. Please refer to Page 6 to 8.

Internal structure and parts list: With adjustable full-stroke shock absorber (25 mm bore)

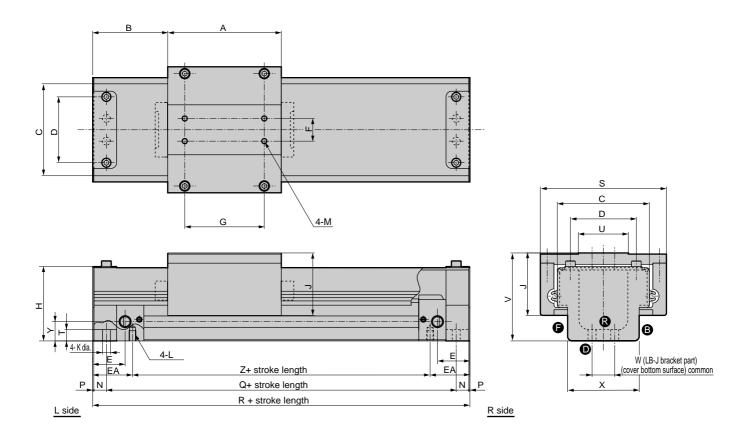




Note 1: When shipping, extension joints (two pcs.) are attached.

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Caution plate (Do not step.)	Polypropylene		12	LB-J bracket	Aluminum alloy	Alumite
2	Hexagon socket head cap screw	Stainless steel	-	13	Plate nut	Steel	Blackening
3	Hexagon socket head cap screw	Steel	Blackening	14	Adaptor (R)	Steel	Galvanizing
4	Hexagon nut	Steel	Blackening	15	Main body		
5	Hexagon nut	Steel	Blackening	16	Adaptor (L)	Steel	Galvanizing
6	Shock absorber			17	Hexagon socket head cap screw	Steel	Blackening
7	Hexagon socket head set screw	Steel	Blackening	18	Hexagon socket head cap screw	Steel	Blackening
8	Hexagon socket head cap screw	Stainless steel	-	19	Table adaptor	Aluminum alloy	Alumite
9	Cover	Aluminum alloy	Alumite	20	Table plate	Aluminum alloy	Alumite
10	Caution plate (pinch caution)	Polypropylene		21	Side cover	Aluminum alloy	Alumite
11	Plate	Steel	Black alumite				

Internal structure and parts list: With adjustable full-stroke shock absorber (32 to 63 mm bore)


Note 1: When shipping, extension joints (two pcs.) are attached.

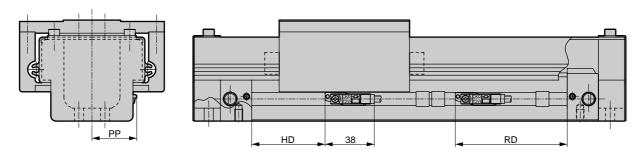
No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Caution plate (Do not step.)	Polypropylene	-	11	Caution plate (pinch caution)	Polypropylene	
2	Hexagon socket head cap screw	Stainless steel	-	12	Adaptor	Steel	Galvanizing
3	Hexagon socket head cap screw	Steel	Blackening	13	LB-J bracket	Aluminum alloy	Alumite
4	Adaptor	Steel	Galvanizing	14	Adaptor nut B	Steel	Blackening
5	Hexagon nut	Steel	Blackening	15	Main body		
6	Shock absorber			16	Adaptor nut A	Steel	Blackening
7	Hexagon nut	Steel	Blackening	17	Hexagon socket head cap screw	Steel	Blackening
8	Hexagon socket head set screw	Steel	Blackening	18	Table adaptor	Aluminum alloy	Alumite
9	Hexagon socket head cap screw	Stainless steel		19	Table plate	Aluminum alloy	Alumite
10	Cover	Aluminum alloy	Alumite	20	Side cover	Aluminum alloy	Alumite

SRL2-J Series

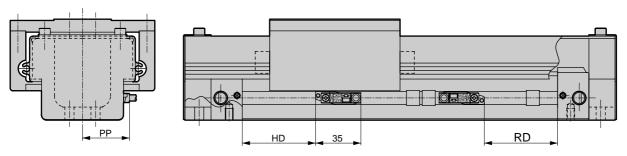
Dimensions (25 mm bore)

• 25 mm bore CAD (File name : Page Ending 13)

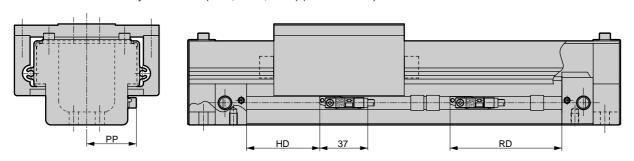
Note 1: When shipping, extension joints (two pcs.) are attached.

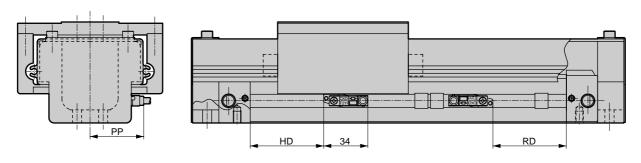

Symbol	Α	В	С	D	Е	EA	F	G	Н	J	K	L	M
SRL2-J-25	100	66	81	58	28.5	35	20	70	65.5	55	7	M6 depth 9	M5 penetrating
Symbol	N	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	
SRL2-J-25	11	1	208	232	111	10	44	77.5	20	63	17	162	

Note) For SRL2- J, installation dimensions are as same as SRL2 -LB (Page 10).


Dimensions

• 25 mm bore (with switch)

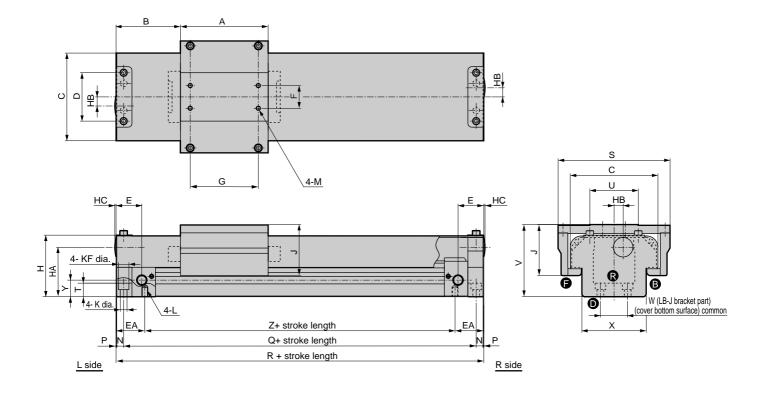

• SRL2-J-**-**-T*YLH with cylinder switch (axial lead wire)


• SRL2-J-**-**-T*YLV with cylinder switch (radial lead wire)

• SRL2-J-**-**-T*Y*H with cylinder switch (T*YF, T*YM, T*YD) (axial lead wire)

• SRL2-J-**-**-T*Y*V with cylinder switch (T*YF, T*YM) (radial lead wire)

LID	חח	PP			
HD	RD	T * Y ^F _M V	$T * Y_M^F H, T * YD$	T * YLV	T * YLH
56	86	41	38	36	34

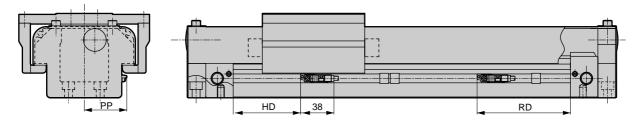

SRL2-J Series

Dimensions

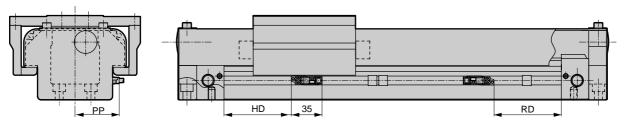
• 32 to 63 mm bore CAD

(File name : Page Ending 13)

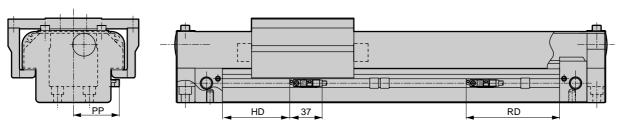
Note 1: When shipping, extension joints (two pcs.) are attached.

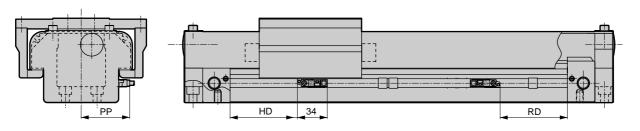

Symbol	А	В	С	D	Е	EΑ	F	G	Н	HA	НВ	НС	J	K	K	F
SRL2-J-32	106	81	102	58	31	35	20	80	71.5	55.5	12	2	61	7		-
SRL2-J-40	116	85	116	64	34	36	30	90	81.5	65.5	12	2	67.5	9	14 spot fac	e depth 8.6
SRL2-J-50	120	90	140	84	36	44	30	100	102	80	17	2	85	9	14 spot fac	e depth 8.6
SRL2-J-63	136	106	162	95	41	45	40	110	115	93.5	20	2	91	11	17.5 spot fac	ce depth 10.8
Symbol	ا	_	1	Л	N	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
SRL2-J-32	M6 de	epth 9	M6 pen	etrating	11	1	244	268	134	11	52	85.5	32	72	18.5	196
SRL2-J-40	M8 de	pth 12	M6 pen	etrating	9	1	266	286	148	18	64	95.5	36	85	22	210
SRL2-J-50	M8 de	pth 12	M8 pen	etrating	9	1	280	300	178	22.5	74	119	45	109	28	212
SRL2-J-63	M10 de	epth 15	M8 pen	etrating	12	1	322	348	200	28	96	132	50	129	35	258

Note) Installation dimensions of SRL2- J are as same as SRL2-LB (Page 10).

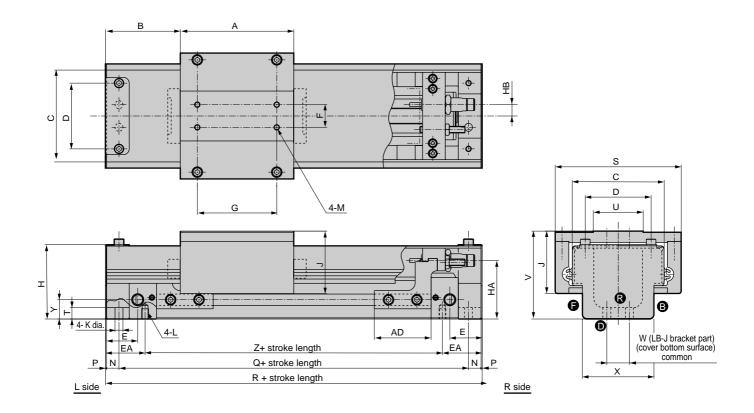

Dimensions

• 32 to 63 mm bore (with switch)


• SRL2-J-**-**-T*YLH with cylinder switch (axial lead wire)


• SRL2-J-**-**-T*YLV with cylinder switch (radial lead wire)

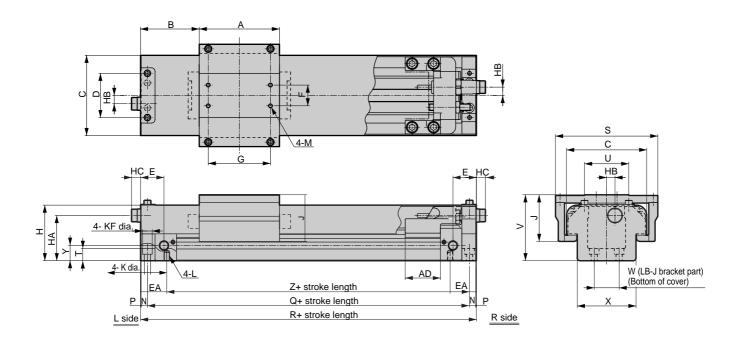
• SRL2-J-**-**-T*Y*H with cylinder switch (T*YF, T*YM, T*YD) (axial lead wire)


• SRL2-J-**-**-T*Y*V with cylinder switch (T*YF, T*YM) (radial lead wire)

Cumak	اما	HD	RD ·	PP								
Symb	ЮІ		KD	T * Y ^F _M V	$T * Y_M^F H, T * YD$	T * YLV	T * YLH					
SRL2-J	-32	70	100	48	45	43	41					
SRL2-J	-40	76	106	55	52	50	48					
SRL2-J	-50	75	105	63	60	58	56					
SRL2-J	-63	94	124	74	71	69	67					

SRL2-J Series

Dimensions: With adjustable full-stroke shock absorber (25 mm bore)



Note 1: When shipping, extension joints (two pcs.) are attached.

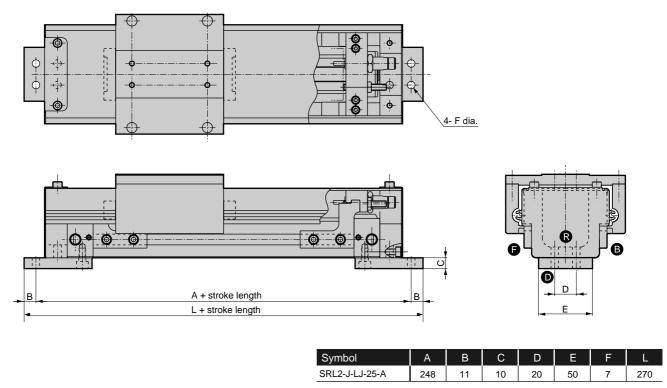
Symbol	Α	AD	В	С	D	Е	EΑ	F	G	Н	HA	НВ	J	K
SRL2-J-25-A	100	50	66	81	58	28.5	35	20	70	65.5	51.5	10	55	7
Symbol	L	М	N	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
SRL2-J-25-A	M6 depth 9	M5 pene.	11	1	208	232	111	10	44	77.5	20	63	17	162

Note) Installation dimensions of SRL2- J are as same as SRL2 -LB (Page 10).

Dimensions: With adjustable full-stroke shock absorber (32 to 63 mm bore)

Note 1: When shipping, extension joints (two pcs.) are attached.

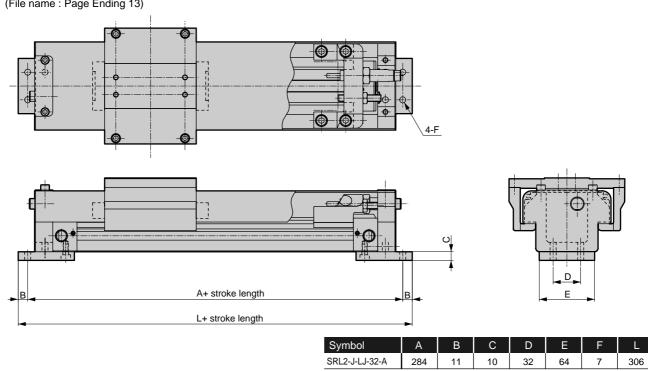
Symbol	Α	AD	В	С	D	Е	EA	F	G	Н	НА	НВ	НСмах	J	K	KF	L	М
SRL2-J-32-A	106	46	81	102	58	31	36	20	80	70.5	55.5	12	6	61	7	-	M16 depth 9	M6 pene.
SRL2-J-40-A	116	51	85	116	64	34	38	30	90	80.5	65.5	12	13	67.5	9	14 spot face depth 8.6	M8 depth 12	M6 pene.
SRL2-J-50-A	120	53	90	140	84	36	44	30	100	101	80	17	34	85	9	14 spot face depth 8.6	M8 depth 12	M8 pene.
SRL2-J-63-A	136	64	106	162	95	41	45	40	110	114	93.5	20	18	91	11	17.5 spot face depth 10.8	M10 depth 15	M8 pene.
Symbol	N	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z						
SRL2-J-32-A	11	1	244	268	134	11	52	85.5	32	72	18.5	196						
SRL2-J-40-A	9	1	266	286	148	18	64	95.5	36	85	22	210						
SRL2-J-50-A	9	1	280	300	178	22.5	74	119	45	109	28	212						
SRL2-J-63-A	12	1	322	348	200	28	96	132	50	129	35	258						


Note) Installation dimensions of SRL2- J are as same as SRL2 -LB (Page 10).

SRL2-J Series

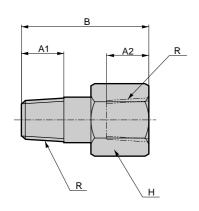
Dimensions: Mounting style (L J) (25 mm bore)

(File name : Page Ending 13)

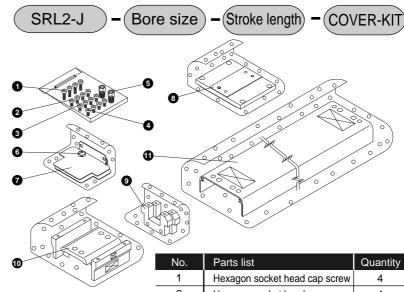


[•] Dimensions with adjustable full-stroke shock absorber (A *) are as same as basic type.

Dimensions: Mounting style (L J) (32 mm bore)


(File name: Page Ending 13)

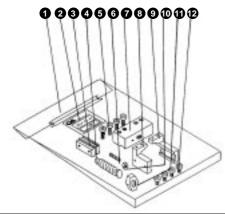
 \bullet Dimensions with adjustable full-stroke shock absorber (A $^{\star})$ are as same as basic type.


Other dimensions

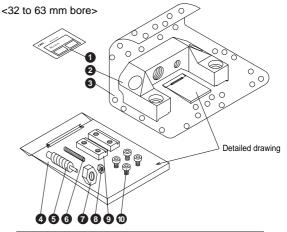
Dimensions: Extension joint

Symbol	A1	A2	В	R	Н
SRL2-J-PF01	8	8	28.5	Rc1/8	14
SRL2-J-PF02	11	11	33	Rc1/4	17
SRL2-J-PF03	12	12	37	Rc3/8	21

Cover kit components table

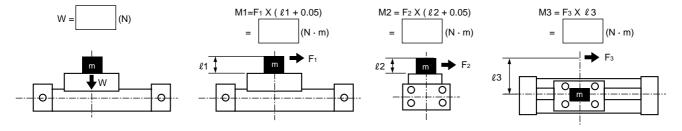

No.	Parts list	Quantity
1	Hexagon socket head cap screw	4
2	Hexagon socket head cap screw	4
3	Hexagon socket head cap screw	4
4	Hexagon socket head cap screw	4
5	Extension joint	2
6	Hole plug	2
7	Side cover	2
8	Table plate	1
9	LB-J bracket	2
10	Table adaptor	1
11	Cover	1

Adjustable full-stroke kit components table


• Adjustable full-stroke kit

<25 mm bore>

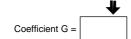
No.	Parts list	Quantity
1	Plastic bag	1
2	Package label (S)	1
3	Plate nut	2
4	Shock absorber	1
5	Hexagon socket head cap screw	4
6	Hexagon socket head set screw	1
7	Plate	1
8	Adaptor (R)	1
9	Adaptor (L)	1
10	Nut for stopper bolt fixing	1
11	Nut for shock absorber fixing	1
12	Hexagon socket head cap screw	4

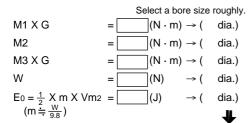


No.	Parts list	Quantity
1	Package label (S)	1
2	Adaptor	1
3	Air mat	
4	Plastic bag	1
5	Shock absorber	1
6	Hexagon socket head set screw	1
7	Hexagon nut	1
8	Hexagon nut	1
9	Adaptor nut	2
10	Hexagon socket head cap screw	4

Rodless cylinder selection guide

<STEP1>


- Find the static moment.
 - How to find moment



Note: Above 0.05 (m) is the temporary distance from the piston center to the table surface. 2 Find a rough value of coefficient G

according to <Table 1>.

Va (average speed) (m/s)	Vm (speed at stroke end) (m/s)	Coefficient G
0.3	to 0.65	9
0.6	to 1.00	15
0.9	to 1.30	23
1.2	to 2.00	40

Select the maximum bore size temporally

dia.

<Table 2> Allowable value Refer to the value in () for C mount bracket.

Descriptions Bore size (mm)		M1 _{max} (N · m)	M2 _{max} (N⋅m)	MЗ _{тах} (N · m)
12 dia.	30(15)	1.5(1)	0.6(0.3)	0.6(0.6)
16 dia.	140(70)	5(3.5)	1(0.5)	1(1)
20 dia.	200(100)	10(7)	1.5(0.7)	3(3)
25 dia.	360(180)	17(12)	5(2.5)	10(10)
32 dia.	620(310)	36(25)	10(5)	21(21)
40 dia.	970(485)	77(54)	23(11.5)	26(26)
50 dia.	1470(735)	154(108)	32(16)	42(42)
63 dia.	2320(1160)	275(193)	52(26)	76(76)
80 dia.	3500	460	70	100
100 dia.	5000	750	95	130
12 dia.	30(15)	1.5(1)	0.6(0.3)	0.4(0.4)
16 dia.	140(70)	5(3.5)	1(0.5)	0.6(0.6)
20 dia.	200(100)	10(7)	1.5(0.7)	1(1)
25 dia.	360(180)	17(12)	5(2.5)	2(2)
32 dia.	620(310)	36(25)	10(5)	4(4)
	810(485)	41(41)	18(11.5)	5(5)
50 dia.	1440(735)	76(76)	32(16)	9(9)
63 dia.	1630(1160)	98(98)	51(26)	12(12)
80 dia.	3500	351	70	37
	4130	386	95	42
	350	12	3.5	10
	600	25	7	21
	950			26
	1440	107	23	42
63 dia.	2280	200	38	76
	mm) 12 dia. 16 dia. 20 dia. 25 dia. 32 dia. 40 dia. 50 dia. 63 dia. 80 dia. 1100 dia. 12 dia. 16 dia. 20 dia. 25 dia. 32 dia. 40 dia. 50 dia. 50 dia. 50 dia.	mm) (N) 12 dia. 30(15) 16 dia. 140(70) 20 dia. 200(100) 25 dia. 360(180) 32 dia. 620(310) 40 dia. 970(485) 50 dia. 1470(735) 63 dia. 2320(1160) 80 dia. 3500 100 dia. 5000 112 dia. 30(15) 16 dia. 140(70) 20 dia. 200(100) 25 dia. 360(180) 32 dia. 620(310) 40 dia. 140(70) 50 dia. 3500 10 dia. 3500 10 dia. 3500 10 dia. 3500 15 dia. 360(180) 16 dia. 140(70) 25 dia. 360(180) 36 dia. 1430(485) 50 dia. 1440(735) 63 dia. 1630(1160) 80 dia. 3500 100 dia. 4130 25 dia. 350 32 dia. 600 40 dia. 950 50 dia. 1440	mm) (N) (N · m) 12 dia. 30(15) 1.5(1) 16 dia. 140(70) 5(3.5) 20 dia. 200(100) 10(7) 25 dia. 360(180) 17(12) 32 dia. 620(310) 36(25) 40 dia. 970(485) 77(54) 50 dia. 1470(735) 154(108) 63 dia. 2320(1160) 275(193) 80 dia. 3500 460 100 dia. 5000 750 12 dia. 30(15) 1.5(1) 16 dia. 140(70) 5(3.5) 20 dia. 200(100) 10(7) 25 dia. 360(180) 17(12) 32 dia. 620(310) 36(25) 40 dia. 810(485) 41(41) 50 dia. 1630(1160) 98(98) 80 dia. 3500 351 100 dia. 4130 386 25 dia. 350 12 32 dia. 600 25 40 dia	mm) (N) (N · m) (N · m) 12 dia. 30(15) 1.5(1) 0.6(0.3) 16 dia. 140(70) 5(3.5) 1(0.5) 20 dia. 200(100) 10(7) 1.5(0.7) 25 dia. 360(180) 17(12) 5(2.5) 32 dia. 620(310) 36(25) 10(5) 40 dia. 970(485) 77(54) 23(11.5) 50 dia. 1470(735) 154(108) 32(16) 63 dia. 2320(1160) 275(193) 52(26) 80 dia. 3500 460 70 100 dia. 5000 750 95 12 dia. 30(15) 1.5(1) 0.6(0.3) 16 dia. 140(70) 5(3.5) 1(0.5) 20 dia. 200(100) 10(7) 1.5(0.7) 25 dia. 360(180) 17(12) 5(2.5) 32 dia. 620(310) 36(25) 10(5) 40 dia. 810(485) 41(41) 18(11.5) 50 dia. 140(735)

<Table 3> Allowable energy absorption of SRL2 (E0)

Bore size (mm)	Integrated air cushion (J)	Shock absorber (J)	Model
12 dia.	0.03	2.4	NCK-0.3-C
16 dia.	0.22	2.4	NCK-0.3-C
20 dia.	0.59	5.7	NCK-0.7-C
25 dia.	1.40	10.0	NCK-1.2
32 dia.	2.57	18.0	NCK-2.6
40 dia.	4.27	50.0	NCK-7
50 dia.	9.13	86.0	NCK-12
63 dia.	17.4	86.0	NCK-12
80 dia.	33.0	143.0	NCK-20
100 dia.	57.0	143.0	NCK-20

3 Find composite moment at stroke end (M_T).

(Confirm that bore size selected at 2 should meet the expression below.)

$$MT = \frac{M1 \times G}{M1 max} + \frac{M2}{M2 max} + \frac{M3 \times G}{M3 max} + \frac{W}{Wmax} < C$$

: Composite moment (should be smaller than 1.)

: Coefficient G

Wmax: Max. allowable value of W (from Table 2) M1max: M1 maximum allowable value (from Table 2) M2max: M2 maximum allowable value (from Table 2) M3max: M3 maximum allowable value (from Table 2)

<STEP2>

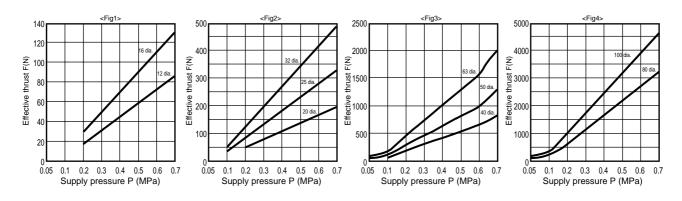
Then increase accuracy of load factor, effective thrust, speed at stroke end, and composite moment value.

• Find load factor.

$$\alpha = \frac{F_0}{F} X100[\%]$$

lpha: Load factor

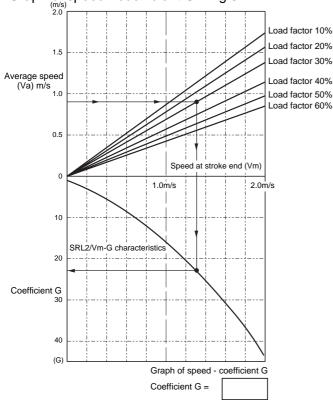
F₀: Required force to move a work piece (N). F: Cylinder effective thrust (N) (Fig1 to 4)


At horizontal operation	When vertical operation
F0 = FW + F1 + F2 + F3 + FL	F0=W + F1 + F2 + F3 + FL
Fw: W X 0.2 (N)	F ₁ : M ₁ X 10 Note (N)
F ₂ : M ₂ X 30 Note (N)	F ₃ : M ₃ X 10 Note (N)
FL: Other resistance (guide resistance	e etc.) (N) W: Load (N)

Note: When moment is applied, coefficient compensating increase of generated frictional force.

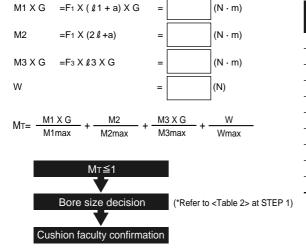
<table 4=""></table>	Reference	of load	factor
----------------------	-----------	---------	--------

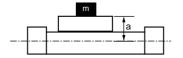
Working pressure (MPa)	Load factor (%)
0.2 to 0.3	<i>α</i> ≤ 40
0.3 to 0.6	<i>α</i> ≦50
0.6 to 0.7	α ≦60


· Graph of effective thrust

<STEP3>

Find speed at stroke end (Vm) according to coefficient G, average speed (Va), and load factor found at STEP 2. Refer to <Fig.3>.


• Graph of speed - coefficient G <Fig.3>


- Arrow (→) in figure shows
- Average speed: 0.9m/s
- Load factor: 30%
- Speed at stroke end: 1.3m/s
- Coefficient G: Example finding 22.5
 - is shown.

<STEP4>

• Check composite moment (M_T) according to coefficient G, and coefficient of speed at stroke end (Vm) found at STEP 3.

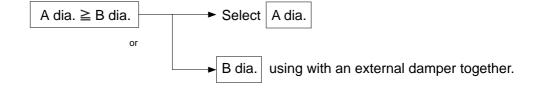
<table 5=""> Value of a</table>				
Bore size	a(m)			
Dule Size	SRL2, SRL2-G, SRL2-Q, SRL2-GQ	SRL2-J		
12 dia.	0.023	-		
16 dia.	0.025	-		
20 dia.	0.028	-		
25 dia.	0.036	0.061		
32 dia.	0.039	0.068		
40 dia.	0.045	0.074		
50 dia.	0.054	0.091		
63 dia.	0.060	0.097		
80 dia.	0.081	-		
100 dia.	0.089	-		

<STEP5>

· Confirming cushion faculty

E : Kinetic energy at work piece final end (J)

M : Load mass (kg)

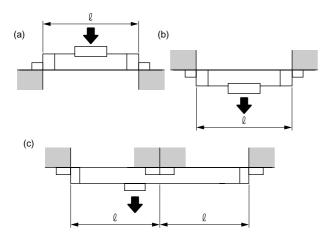

Vm : Piston cushion rush speed (m/s)

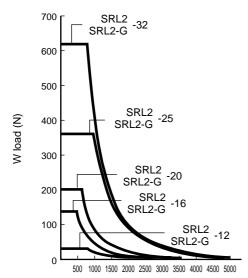
<Table 3> Allowable energy absorption of SRL2 (E0)

Bore size	Integrated air cushion	Shock absorber	Model No.
(mm)	(J)	(J)	Wodel No.
12 dia.	0.03	2.4	NCK-0.3-C
16 dia.	0.22	2.4	NCK-0.3-C
20 dia.	0.59	5.7	NCK-0.7-C
25 dia.	1.40	10.0	NCK-1.2
32 dia.	2.57	18.0	NCK-2.6
40 dia.	4.27	50.0	NCK-7
50 dia.	9.13	86.0	NCK-12
63 dia.	17.4	86.0	NCK-12
80 dia.	33.0	143.0	NCK-20
100 dia.	57.0	143.0	NCK-20

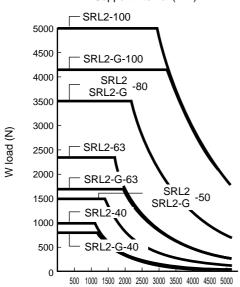
<STEP6>

- Bore size determined by cushion faculty is assumed as A dia. (Bore size determined at STEP5)
- Bore size determined according to load conditions is assumed as B dia. (bore size determined according to STEP 4)

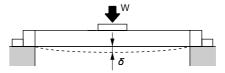



Selection guide

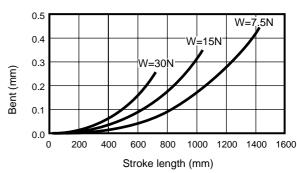
1 Restriction of vertical load


 Long stroke length causes cylinder tube deflection by cylinder self-weight/load. In this case, adjust the intermediate support bracket to meet the conditions such as support intervals ℓ on the following diagram should be the graph value or less. (Intermediate support bracket is an auxiliary bracket for deflection prevention, but not fixing bracket).

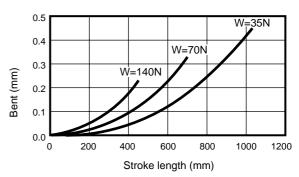
• Allowable load for support methods above (a) (b) (c)

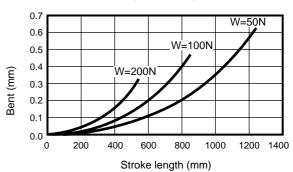


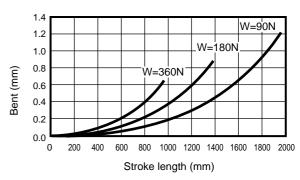
Support interval (mm)



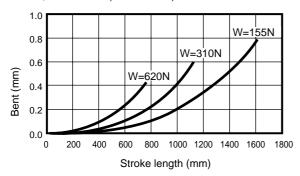
Support interval (mm)

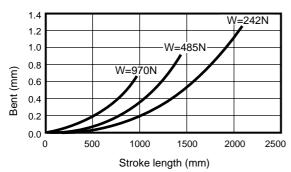

2 Bent of cylinder tube δ


• SRL2-12, SRL2-G-12 (12 mm bore)

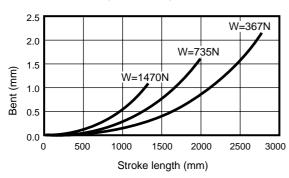

• SRL2-16, SRL2-G-16 (16 mm bore)

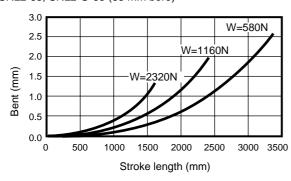
• SRL2-20, SRL2-G-20 (20 mm bore)

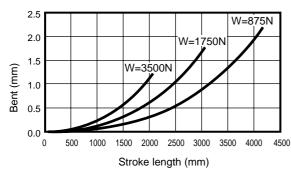

• SRL2-25, SRL2-G-25 (25 mm bore)

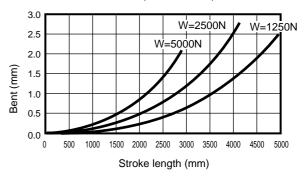

SRL2 Series

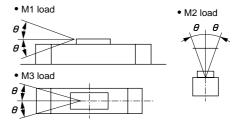
Selection guide

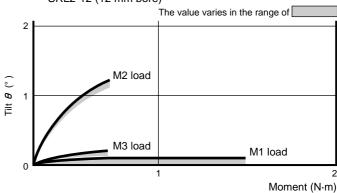

• SRL2-32, SRL2-G-32 (32 mm bore)

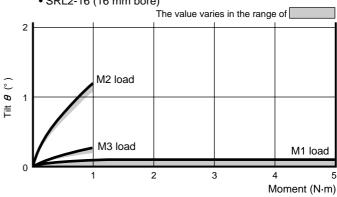

• SRL2-40, SRL2-G-40 (40 mm bore)


• SRL2-50, SRL2-G-50 (50 mm bore)

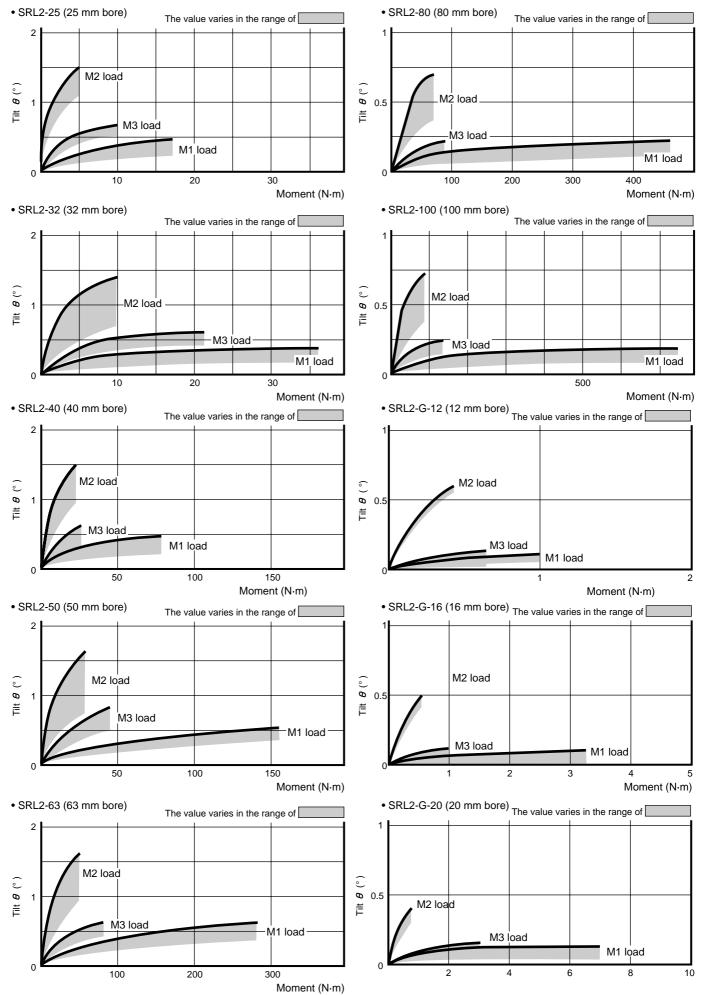

• SRL2-63, SRL2-G-63 (63 mm bore)


• SRL2-80, SRL2-G-80 (80 mm bore)

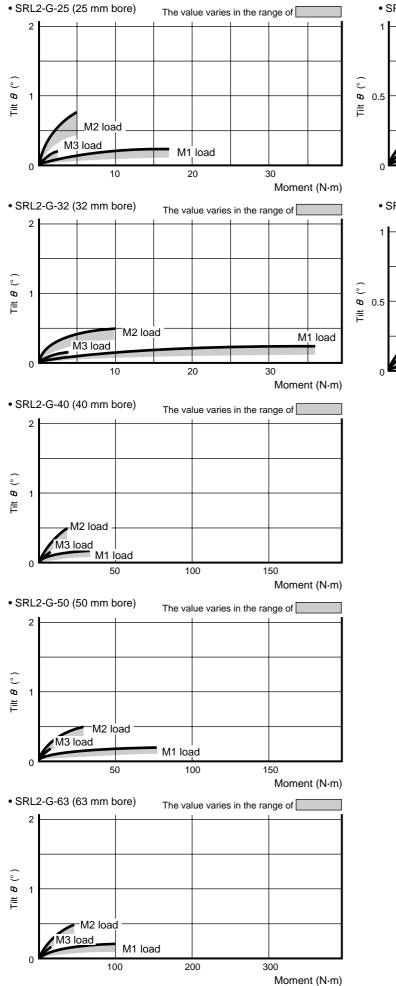

• SRL2-100, SRL2-G-100 (100 mm bore)

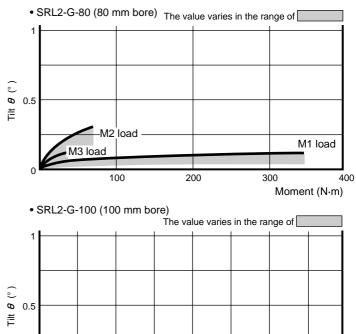

3 Inclination of table *9*

• SRL2-12 (12 mm bore)



• SRL2-16 (16 mm bore)


• SRL2-20 (20 mm bore)



SRL2 Series

Selection guide

M1 load

500

Moment (N·m)

M2 load

M3 load

Adjustable full-stroke unit adjustment method

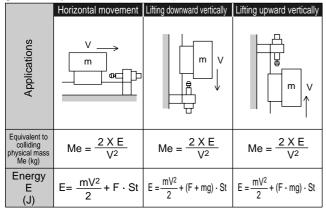
Confirming allowable energy absorption of shock absorber Calculate mass equivalent to colliding object Me, and absorbed energy E according to the formula on the table below, and Me and E should not be greater than the allowable value of Fig.4, and Table 3 on Page Ending 1.

Allowable value of mass equivalent to colliding object Me and colliding energy E may vary depending on colliding speed.

Symbol

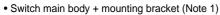
E : Colliding energy J

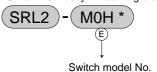
Me : Equivalent to colliding physical mass kg

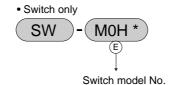

m : Mass of work piece kg

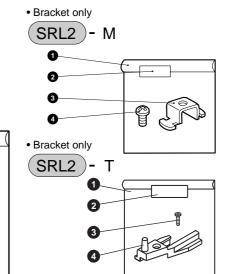
F : Cylinder thrust N

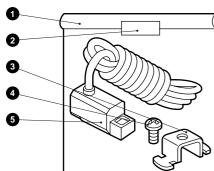
V : Colliding speed (m/s)


St : Stroke length (m) of shock absorber


g : Gravity acceleration 9.8 (m/s²)




Components table

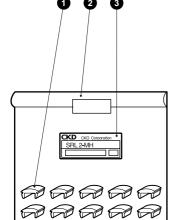

Switch

No.	Part name	Qty
1	Plastic bag	1
2	Label	1
3	Switch	1

No	ο.	Part name	Qty
1	1	Plastic bag	1
2	2	Label	1
3	3	Switch bracket	1
	1	Cross headed pan	1

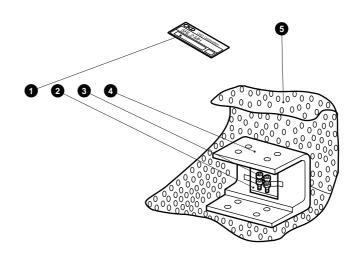
Switch

• Lead wire holder



Part name Plastic bag

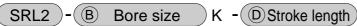
Switch

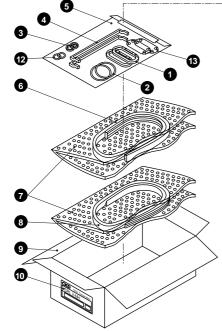

Switch bracket

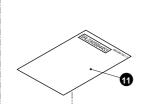
Cross headed pan

C mount bracket

No.	Part name	Qty
1	Lead wire holder	10
2	Plastic bag	1
3	Package label (S)	1


No.	Part name	Qty
1	Package label (S)	1
2	Plastic bag	1
3	Hexagon socket head cap screw	4
4	C mount	1
5	Air mat	


Note: Some packing style may change depending on size.

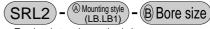

Components table

Repair parts

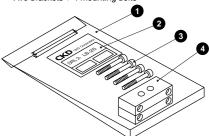
• Repair parts

No.	Part name		
1	Piston packing seal	2	
2	O ring P	2	
3	Cushion packing seal	2	
4	Dust wiper	2	
5	Plastic bag	1	
6	Seal belt (L)	1	
7	Air mat	1	
8	Dust-proof belt (B)	1	
9	Cardboard box	1	
10	Package label (L)	1	
11	Repair parts replacement procedure	1	
12	O ring special	2	
13	Cushion ring gasket	2	

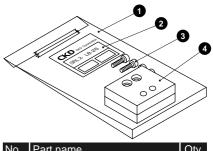
Note 1: For 12 to 40 mm bore, no cushion ring gasket is included.


<32 to 63 mm bore>

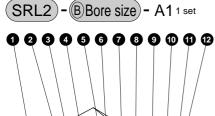
Note 2: For 80 to 100 mm bore cylinder, 4 gaskets are additionally attached.

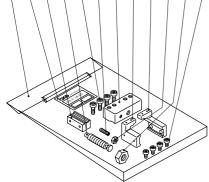

4667890

Mounting bracket


Mounting bracket

Two brackets + 4 mounting bolts


Ν	0.	Part name			
	1	Plastic bag			
	2	Package label (S)			
	3	Hexagon socket head cap screw	4		
	4	Foot bracket (A)	2		



No.	Part name			
1	Plastic bag			
2	Package label (S)			
3	Hexagon socket head cap screw	4		
4	Foot bracket (B)	2		

Adjustable full-stroke kit

Adjustable full-stroke kit

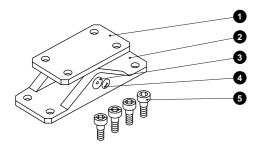
No.	Part name	Qty		
1	Plastic bag			
2	Package label (S)	1		
3	Plate nut	2		
4	Shock absorber	1		
5	Hexagon socket head cap screw	4		
6	Hexagon socket head set screw	1		
7	Plate			
8	Adaptor (R)	1		
9	Adaptor (L)	1		
10	Nut for stopper bolt fixing	1		
11	Nut for shock absorber fixing	1		
12	Hexagon socket head cap screw	4		

8 Detailed drawing Detailed drawing

<80, 100 mm bore>

No.	Product name	Qty	No.	Product name	Qty
1	Package label (S)	1	7	Hexagon nut	1
2	Adaptor	1	8	Hexagon nut	1
3	Air mat		9	Adaptor nut	2
4	Plastic bag	1	10	Hexagon socket head cap screw	4
5	Shock absorber	1	11	Rough spring	4
6	Hexagon socket head set screw	1			

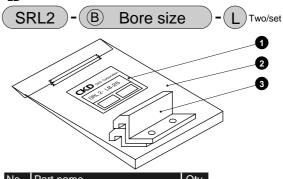
46668900


SRL2 Series

Components table

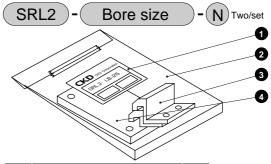
Floating joint set

• Floating joint set



No.	Part name	Qty
1	Mount	1
2	Mount base	1
3	Pin	1
4	Pan head machine screw with spring washer	1
5	Mounting bolt	4

Note: Some packing style may change depending on size.


Intermediate support bracket

• LB

No.	Part name	Qty		
1	Package label (S)	11		
2	2 Plastic bag			
3	Intermediate support bracket	2		

No.	Part name	Qty		
1	Package label (S)	1		
2	2 Plastic bag			
3	Intermediate support bracket	2		
4	Plate	1		

Rodless cylinder

The version of "electric catalog file list" is "CAD DATA 2001.9".

Do Latino Idalia	D)	XF	sion of electric catalog life list is CAD DATA 2001.9.
Product model No.	Folder name	File name	
SRL2-00-12	SRL2	CKD_CG01	
SRL2-00-16		CKD_CG02	
SRL2-00-20		CKD_CG03	
SRL2-00-25		CKD_CH01	
SRL2-00-32		CKD_CH02	
SRL2-00-40		CKD_CH03	
SRL2-00-50		CKD_CH04	
SRL2-00-63		CKD_CH05	
SRL2-00-80		CKD_CH06	
SRL2-00-100		CKD_CH07	
SRL2-LB-12		CKD_CG04 CKD_CG05	
SRL2-LB-16 SRL2-LB-20		CKD_CG05	
SRL2-LB-25		CKD_CH08	
SRL2-LB-32		CKD_CH09	
SRL2-LB-40		CKD_CH10	
SRL2-LB-50		CKD_CH11	
SRL2-LB-63		CKD_CH12	
SRL2-LB-80		CKD_CH13	
SRL2-LB-100		CKD_CH14	
SRL2-LB1-12		CKD_CG07	
SRL2-LB1-16		CKD_CG08	
SRL2-LB1-20		CKD_CG09	
SRL2-LB1-25		CKD_CH15	
SRL2-LB1-32		CKD_CH16	
SRL2 accessory, 12mm bore (Shock absorber/filoating joint/intermediate support bracket/C mount bracket)		CKD_CG97	
SRL2 accessory, 16mm bore (Shock absorber/filoating joint/intermediate support bracket/C mount bracket)		CKD_CG98	
SRL2 accessory, 20mm bore (Shock absorber/floating joint/intermediate support bracket/C mount bracket)		CKD_CG99	
SRL2 accessory, 25mm bore (Shock absorber/floating joint/intermediate support bracket/C mount bracket)		CKD_CH93	
SRL2 accessory, 32mm bore (Shock absorber/floating joint/intermediate support bracket/C mount bracket)		CKD_CH94	
SRL2 accessory, 40mm bore (Shock absorber/floating joint/intermediate support bracket/C mount bracket)		CKD_CH95	
SRL2 accessory, 50mm bore (Shock absorber/floating joint/intermediate support bracket/C mount bracket)		CKD_CH96	
SRL2 accessory, 63mm bore (Shock absorber/filoating joint/intermediate support bracket/C mount bracket)		CKD_CH97	
SRL2 accessory, 80mm bore (Shock absorber/filoating joint/intermediate support bracket/C mount bracket)		CKD_CH98	
SRL2 accessory, 100mm bore (Shock absorber/floating joint/intermediate support bracket/C mount bracket)		CKD_CH99	

SRL2 Series

Electric catalog file list

Rodless cylinder

• Double acting/full cowling type

The version of "electric catalog file list" is "CAD DATA 2001.9".

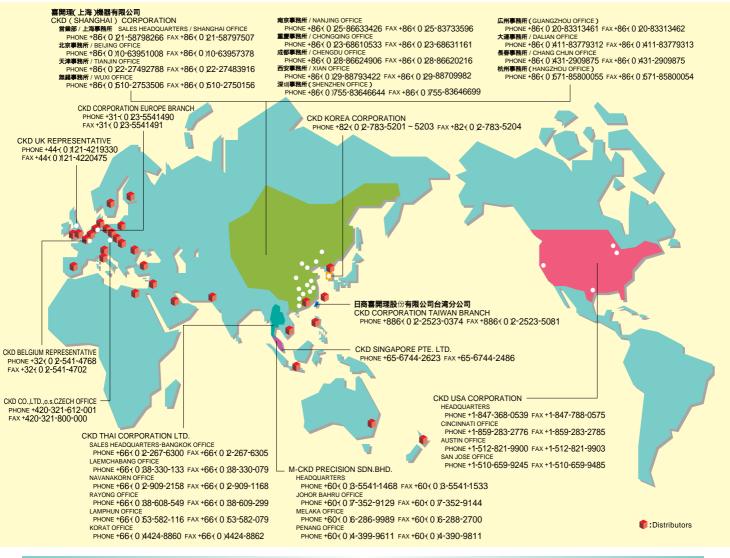
Draduat madal Na	DXF		
Product model No.	Folder name	File name	
SRL2-J-00-25	SRL2	CKD_CN01	
SRL2-J-00-32		CKD_CN02	
SRL2-J-00-40		CKD_CN03	
SRL2-J-00-50		CKD_CN04	
SRL2-J-00-63		CKD_CN05	
SRL2-J-LJ-25		CKD_CN06	
SRL2-J-LJ-32		CKD_CN07	
SRL2-J accessory, 25mm bore		CKD CN95	
(Floating joint/intermediate support bracket/shock absorber)		OND_ONOS	
SRL2-J accessory, 32mm bore		CKD_CN96	
(Floating joint/intermediate support bracket/shock absorber)		0.12_0.100	
SRL2-J accessory, 40mm bore		CKD CN97	
(Floating joint/intermediate support bracket/shock absorber)		0112_01101	
SRL2-J accessory, 50mm bore		CKD CN98	
(Floating joint/intermediate support bracket/shock absorber)		0112_01100	
SRL2-J accessory, 63mm bore		CKD CN99	
(Floating joint/intermediate support bracket/shock absorber)		OND_ONO	

CKD WARRANTY

Subject to the conditions below, CKD Corporation ("CKD") warrants the first end user (the "Buyer") that CKD's products are free from defects in material and workmanship.

CKD will, at CKD's option, either repair or replace a defective product, including lowest transportation costs but not including installation or any other similar charges, provided that (1) the buyer notifies CKD in writing of the claimed defect within one year from the date Buyer received the product, (2) provides a complete explanation of the defect, the application of the product, and such other information concerning use of the product as CKD may request, and (3) returns the product to CKD in accordance with CKD's specific written instructions and authorization obtained from CKD prior to return of the product, and CKD's inspection confirms that the product was defective.

This warranty applies only if the product was used and applied correctly under normal operating conditions and good engineering practice; was installed, operated and maintained in accordance with all instructions issued or published by CKD; was used within stated pressure, media and operating limitations published by CKD and in effect on the date of shipment; and was not subject to abuse, misuse or unauthorized modification.


THIS WARRANTY IS THE ONLY AUTHORIZED CKD WARRANTY AND IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPILIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, notwithstanding any disclosure to CKD of the use to which the product is to be put. The Buyer's **SOLE AND EXCLUSIVE REMEDY** on any claim of any kind for any loss or damage arising out of the manufacture, sale, delivery or use of CKD's products shall be for the repair or replacement of any defective products as provided herein.

PROFITS, PERSONAL INJURY, COSTS OF DELAY OR FOR ANY OTHER SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL LOSSES, COSTS OR DAMAGES. There are no warranties, expressed or implied, made by CKD other than the warranty against defects in material and workmanship set forth above, and CKD neither assumes nor authorizes any other person or firm to assume for it any other obligations or liability.

CKD shall not be liable for any trouble, malfunction and damages of CKD products caused, directly or indirectly, by disaster or any other causes not attributable to CKD's responsibility. CKD also shall not be responsible for any trouble, malfunction and damages of CKD Products caused by the lack or malfunction of safety circuit or structure or function that should be commonly equipped in the Buyer's equipment in which the CKD products were used.

CKD MAINTAINS A POLICY OF ONGOING PRODUCT DEVELOPMENT AND INPROVEMENT. WE THEREFORE RESERVE THE RIGHT TO CHANGE DIMENSIONS, SPECIFICATIONS AND DESIGN WITHOUT NOTICE.

WORLD-NETWORK

CKD Corporation

OVERSEAS DPT. SALES DIV. 2-250 Ouji Komaki, Aichi 485-8551, Japan PHONE+81-(0)568-74-1338 FAX+81-(0)568-77-3461

U.S.A CKD USA CORPORATION

HEADQUARTERS

4080 Winnetka Avenue, Rolling Meadows, IL 60008 USA

CINCINNATI OFFICE 1420 Jamike Drive, Erlanger, KY 41018 USA

AUSTIN OFFICE

8403 Cross Park Drive, Suite 3G, Austin, TX 78754, USA

SAN JOSE OFFICE

48501 Warm Spring Boulevard, Suite 114

Fremont, CA 94539 USA

EUROPE

CK EUROPE BRANCH

De Fruittuinen 28 Hoofddorp 2132NZ The Netherlands

M-CKD PRECISION SDN.BHD

HEADQUARTERS

Lot No.6, Jalan Modal 23/2, Seksyen 23, Kawasan, MIEL, Fasa 8, 40300 Shah Alam, Selangor Darul Ehsan, Malaysia JOHOR BAHRU OFFICE

116&118 Jalan Rosmerah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Malaysia

MELAKA OFFICE

No.B-10, Ground Floor, Bachang Permai ,Jalan Tun Fatimah Batu Berendam 75350 Melaka, Malaysia

PENANG OFFICE

No.2678, Ground Floor, Jalan Chain Ferry, Taman Inderwasih, 13600 Prai, Penang, Malaysia

Thailand

CKD THAI CORPORATION LTD.

SALES HEADQUARTERS-BANGKOK OFFICE Suwan Tower, 14/1 Soi Saladaeng 1, North Sathorn Rd., Bangrak, Bangkok 10500 Thailand

LAEMCHABANG OFFICE

53/67, 69 Moo 9, Tungsukla, Sriracha, Chonburi 20230 Thailand

NAVANAKORN OFFICE

176/4-6. Moo 13, Paholyothin Rd., Klongneung

Klongluang, Prathumthani 12120 Thailand

RAYONG OFFICE

125/32 M.Charoen Nakorn, T.Maptapud, Rayong 21150, Thailand LAMPHUN OFFICE

133 Moo 4, Banklang Muang, Lamphun, 51000, Thailand KORAT OFFICE

982/3-4 Mittraphab Rd., Naimuang, Muang, Nakhonratchasima 30000, Thailand

Singapore

CKD SINGAPORE PTE LTD.

705 Sims Drive #03-01/02, Shun Li Industrial Complex, 387384 Singapore

Taiwan

日商喜開理股份有限公司台湾分公司

CKD CORPORATION TAIWAN BRANCH 中華民国台湾省台北市中山北路二段96號嘉新大楼第14楼1405室 Rm.1405, 14F, No.96, Sec.2, Chung Shan N.Rd., Taipei, Taiwan, R.O.C.

喜開理(上海)機器有限公司

営業部/上海事務所(SALES HEADQUARTERS / SHANGHAI OFFICE) 中国上海市浦東新区張楊路188号 湯臣商務中心3楼304室 Room 304, 3'rd Floor, Tomson Business Center, No.188, ZhangYang Road, PuDong, ShangHai, 200120, China

北京事務所(BEIJING OFFICE)

中国北京市復興路戊12号 恩菲科技大廈1015室 En-Fei-Ke-Ji Bdg. Room #1015, Fu-xing-Lu-Wu 12, Beijing,100038, China

天津事務所(TIANJIN OFFICE)

中国天津市南開区白堤路148号 Bai-Di-Lu, 148, Nankai-Qu, Tianjin, 300193, China

無錫事務所(WUXI OFFICE)

中国江蘇省無錫市中山路389号吟春大廈1708室

Room 1708, Yin-Chun Bdg., Zhongshan Road No.389, Wuxi, Jiangsu Province, 214001, China

Home Page Address http://www.ckd.co.jp/

南京事務所(NANJING OFFICE)

中国南京市山西路57号杰源山西路商務中心502室 Room 502, Jieyuan Shanxi Road Business Center No.57, Shanxi Road, Nanjing, 210009, China

重慶事務所(CHONGQING OFFICE)

中国重慶市石橋舗楡洲路8号泰興科技広場1634号 Taixing Keji Square Room 1634, Yuzhou Road No. 8 Shiqiaopu, ChongQing, 400039, China

成都事務所(CHENGDU OFFICE)

中国四川省成都市西玉龍街210号成都外貿大廈22楼2207号 Chengdu Waimao Bdg. 22F, Room #2207, Xi-Yu-Long-Jie 210, Chengdu city, Sichuan Prov., 610015, China

西安事務所(XIAN OFFICE)

中国陝西省西安市労働南路296号西北民航大廈610号 Xi-bei-min-hang Bldg. Room #610, Lao-dong-nan-lu 296, Xian city, Shangxi Prov., 710082, China

深圳事務所(SHENZHEN OFFICE)

中国広東省深圳市華富路1006号航都大廈7B単元 HangDu Building 7B, No.1006 HuaFu Road, Shenzhen, 518031, China

広州事務所(GUANGZHOU OFFICE) 中国広東省広州市環市東路339号広東国際大酒店A楼24C

Guangdong Guoji Dajiudian A-24C, No.339, Huanshidong-Lu, Guangzhou City, Guangdong, 510098 China

大連事務所(DALIAN OFFICE)

中国遼寧省大連市西崗区新開路99号大連珠江国際大廈808室 DaLian ZhuJiang GuoJi-Bld. Room #808, XinKai-Lu 99, DaLian city, LiaoNing Province, 116011, China

長春事務所(CHANG CHUN OFFICE)

中国吉林省長春市長春一汽越野路16号単元4楼中門16-1 16-1Dan Yuan 4-Lou Zhong Men, 16, Chang Chun Yi Qi Yue Ye Lu, Chang Chun City, JiLin Province, 130011, China 杭州事務所(HANGZHOU OFFICE)

中国浙江省杭州市分暉路108号浙江省出版印刷大廈410室

Zhejiangsheng Chuban Yinshua Daxia Room 410, No.108, Fenhui-Lu, Hangzhou City, Zhejiang, 310004 China

Korea

Room No.1105, 11th FL, The Korea Teachers Pention B/L. 27-2, Yoido-Dong, Youngdeungpo-Gu, Seoul, 150-742, Korea