EY-IO 572: I/O module, analogue outputs, universal and digital inputs, modu572

How energy efficiency is improved

SAUTER EY-modulo 5 technology: modular, fast and universal

Features

- Part of the SAUTER EY-modulo 5 system family
- 15 inputs and outputs
- Plug-in element for extending the modu525 automation station (AS)
- Power supply from modu525 AS
- Direct labelling on the front

- Can be equipped with a local operating and indicating unit

Technical data

Power supply			
		Power supply	From modu525 AS via l/O bus
		Power consumption ${ }^{1)}$	$\leq 1.8 \mathrm{VA} / 0.8 \mathrm{~W}$
		Power loss	$\leq 0.8 \mathrm{~W}$
		Current consumption ${ }^{2)}$	$\leq 110 \mathrm{~mA}$
Ambient conditions			
		Operating temperature	0... $45^{\circ} \mathrm{C}$
		Storage and transport temperature	$-25 . . .70^{\circ} \mathrm{C}$
		Admissible ambient humidity	10...85\% rh, no condensation
Inputs/Outputs			
		Analogue outputs	$4 \times 0 \ldots 10 \mathrm{~V} / 0 . . .20 \mathrm{~mA}$ (source)
		Load	$\leq 20 \mathrm{~mA}$
		Load $\geq 5 \mathrm{k} \Omega$	Output 0... $10 \mathrm{~V} / 2 . . .10 \mathrm{~V}$
		Load $\leq 400 \mathrm{k} \Omega$	Output 0... $20 \mathrm{~mA} / 4 . . .20 \mathrm{~mA}$
		Admissible load voltage	$<2 \mathrm{~V}$ (0(4) ... 20 mA)
		Universal inputs	8
		Analogue	Ni1000/Pt1000, U/I/R, Pot
		Digital	DI ($\leq 3 \mathrm{~Hz}$)
		Digital inputs	3 fixed assignment
		Pulse counter	$\leq 50 \mathrm{~Hz}$
Interfaces and communication			
		Connection for modu6 (LOI)	6-pin, integrated
		Connection, I/O bus	12-pin, integrated
		Connection terminals	24 (0.5...2.5 mm ${ }^{2}$)
Construction			
		Fitting	On top-hat rail
		Dimensions W $\times \mathrm{H} \times \mathrm{D}$	$42 \times 170 \times 115 \mathrm{~mm}$
		Weight	0.29 kg
Standards and directives			
		Type of protection	IP 30 (EN 60529)
		Protection class	1 (EN 60730-1)
		Environment class	3K3 (IEC 60721)
CE conformity a	cording to	EMC directive 2004/108/EC	EN 61000-6-1, EN 61000-6-2, EN 61000-6-3, EN 61000-6-4
Overview of types			
Type	Propertie		
EY-IO572F001	I/O modu	gue outputs, universal and digital inputs,	, modu572

[^0]

Accessories

Local operating and indicating units (LOI)

Type	Description
EY-LO630F001	16-LED indication, bi-colour
EY-LO670F001	4 setpoint transmitters (A-0...100\%), 8 LEDs for operation/indication

Description of operation

The modu572 I/O module is used for actuation with a standard signal ($0 \ldots .10 \mathrm{~V}$), receiving digital (alarm/status) and analogue inputs (Ni/Pt1000, U/I/Pot) in operational systems, e.g. in HVAC engineering.
The I/O module has a total of 4 analogue outputs and 8 universal inputs.

Intended use

This product is only suitable for the purpose intended by the manufacturer, as described in the "Description of operation" section.
All related product regulations must also be adhered to. Changing or converting the product is not admissible.

Engineering notes

The modu572 I/O module is generally comprised of two components. The baseplate in which the I/O bus system and the connection terminals are integrated and the actual I/O module electronics.

Fitting/assembly

The baseplate of the I/O module is fitted in a cabinet using a top-hat rail (EN 60715) and connected on the side directly to the I/O bus of the modu525 AS or modules. This work must only be carried out in the de-energised state.
The baseplate contains the "bus module", which is responsible for power supply and continuous communication. This ensures that faults due to a failure or partial defect in the electronic component do not affect the function of other downstream modules.
Removing/inserting the I/O module electronics from/to the baseplate is possible while the AS is in operation.
To ensure plant safety and to avoid any faults at inputs or outputs, the I/O module electronics should only be removed or inserted while the base station is switched off.
The return line of the $\mathrm{Ni} / \mathrm{Pt} 1000$ sensors must be separated from the other inputs and outputs, i.e. separate GND terminals \perp must be used.

Labelling concept

The I/O module can be labelled with a paper insert in the frontal transparent cap. The labelling is usually carried out using texts generated from CASE Suite, and the labels are printed on normal A4 paper using a commercial printer.

Assigning modules to AS

The I/O module electronics are encoded on the hardware side using pin inserts so that only the appropriate baseplate can be used. The modu525 AS detects whether a module baseplate is plugged into the I/O bus. Baseplate number and assignment of module types for the I/O modules on the AS are defined with CASE Suite. This information is permanently stored in the AS.

LED indicator/function

The I/O module is equipped with a system LED that indicates the operating statuses as follows:

System LED

LED I/O bus	Status	Description
No designation	Continuous green light	Module in operation
	Flashing green or red	Module not ready for operation
	Alternating green - red - off	Lamp test active (indicator type priority)
	No indicator	No power supply

Output/inputs

The I/O module has a total of 4 analogue outputs, 8 universal inputs and 3 digital inputs.

Outputs

Number of outputs	4
Type of outputs	Analogue outputs $0(2) \ldots 10 \mathrm{~V}=$ or $0(4) \ldots 2 \mathrm{~mA}$ \geq to 20 mA (source) per output Return line grounded
Update rate	100 ms
Resolution	13 bits

The output voltage is taken from between an output terminal (a0...a3) and a ground terminal. The outputs are designed as sources only and can be loaded with up to 20 mA .
Switching between the current and voltage mode depends on the load connected:

- Load $\leq 400 \Omega$: modu572 assumes that a current input is connected and issues a current signal.
- Load $\geq 5 \Omega$: modu572 assumes that a voltage input is connected and issues a voltage signal.

A load between 400Ω and $5 \mathrm{k} \Omega$ is to be avoided, as under these conditions an undefined status exists. If there is another component in series with the load resistance (e.g. diode, Zener diode), this analogue output is unsuitable for this purpose. The output is explicitly unsuitable for sensors that take their energy supply from the current signal (0(4)... 20 mA).
The specification must be maintained across the entire measuring range. The load that applies to the output terminals, including the line resistance and parasitic resistances, is the deciding factor.
The outputs are protected against static discharges, not against AC or DC that is present.

Universal inputs

\(\left.$$
\begin{array}{l|l}\hline \text { Number of inputs } & 8 \text { (UI) } \\
\hline \begin{array}{l}\text { Type of inputs } \\
\text { (software coding) }\end{array} & \begin{array}{l}\text { Ni1000 (DIN 43760) } \\
\text { Pt1000 (IEC 751) } \\
\text { Voltage measurement (U) } \\
\text { Current measurement (I) channel u8, u9 only! } \\
\text { Potentiometer input (Pot) } \\
\text { Resistance (R) }\end{array}
$$

\hline Protection against external voltage \&

\hline Ni/Pt/U/R/Pot/DI \& \pm 30 \mathrm{~V} / 24 \mathrm{~V} \sim((without destruction)

\hline I (channel u8, u9) \& +12 \mathrm{~V} /-0.3 \mathrm{~V} (without destruction)\end{array}\right]\)| Reference |
| :--- |
| Update rate $1.23 \mathrm{~V} \mathrm{(terminal} \mathrm{no}. \mathrm{22)}$ |
| Channels u8, u12 |
| Channels u9, u10, u11, u13, u14, u15 |
| For temperature measurement (inde- |
| pendent of channel) |
| Resolution |
| Measuring ranges |
| Voltage (U) |
| Current (I) |
| Potentiometer (Pot.) |
| Reference |
| Resits |
| Temperature |
| Ni1000 |
| Pt1000 |

Temperature measurement ($\mathbf{N i} / \mathbf{P t}$)

The Ni/Pt1000 sensors are connected using two wires between one of the input terminals for universal inputs (channel u8...u15) and a ground terminal. The inputs require no calibration and can be used directly. Line resistance of 2Ω is pre-compensated as standard. With the correct line resistance of 2Ω (cable cross-section $1.5 \mathrm{~mm}^{2}$), the power cable (wire) may be no more than 85 m . Larger line
resistances can be compensated by the software. The measurement current is pulsed to ensure that the sensor is not heated (Imeas approx. 0.3 mA).

Voltage measurement (U)

The voltage to be measured is connected between an input terminal for universal inputs (channel u8...u15) and a ground terminal. The signal must be potential-free. The measuring ranges with or without offset $0(0,2) \ldots 1 \mathrm{~V}$ or $0(2) \ldots 10 \mathrm{~V}$ are selected through the software. The internal resistance R_{i} of the input (load) is $9 \mathrm{M} \Omega$.

Current measurement (I)

The current can only be measured at two inputs. The current to be measured is connected at one of the two input terminals for universal inputs (channel u8, u9) and a ground terminal. The current signal must be potential-free. The measuring ranges with or without offset 0 (4) ... 20 mA are selected via the software. The internal resistance R_{i} of the maximum input current must be limited to 50 mA . The internal resistance R_{i} is $<50 \Omega$.

Potentiometer measurement (Pot)

The potentiometer is connected between an input terminal for universal inputs (channel u8...u15), a ground terminal and the terminal $U_{\text {ref }}$ (reference voltage). The reference output is not short circuitproof. To avoid overloading the reference output, the overall resistance of all connected potentiometers may not drop below 123Ω (max. 10 mA load). For a stable, interference-free measurement, a potentiometer value of $\leq 10 \mathrm{k} \Omega$ is recommended.

Note
To maintain measuring accuracy, ground connections should always be connected to the same type of input.
For an optimum connection, we recommend connecting one ground terminal of the I/O module directly with the AS or each appropriate cabinet terminal.

Digital inputs (DI with Ul)

The AS also records binary information with the universal inputs. The information (alarm/status) is connected between an input terminal (u8...u15) and a ground terminal. The station applies a voltage of approximately 13 V to the terminal. If a contact is open, this usually corresponds to an INACTIVE state (bit $=0$). If a contact is closed, there is an ACTIVE state (bit $=1$) and 0 V is applied, giving a current of approximately 1 mA . Short-term changes (default 33 ms) between the station queries are saved briefly and processed at the next cycle.
Every input can be defined individually as an alarm or a status through software parameter setting.
The digital inputs can be displayed with the local indicating unit (e.g. modu630 accessory).

Digital inputs (DI fixed)

Number of inputs	3
Type of inputs	Potential-free contacts with ground connection Opto-coupler Transistor (open collector)
Pulse counter	$\leq 50 \mathrm{~Hz}$
Pulse length	$>4 \mathrm{~ms}$
Protection against external volt- age	$\pm 30 \mathrm{~V} / 24 \mathrm{~V} \sim$ (without destruction)
Max. output current	1.2 mA with respect to ground
Update rate	100 ms

The binary information is connected between one of the input terminals (d5...d7) and the ground. The module applies a voltage of approximately 13 V to the terminal. If a contact is open, this corresponds to an INACTIVE state (bit $=0$). If a contact is closed, there is an ACTIVE state (bit $=1$) and 0 V is applied, giving a current of approximately 1 mA . Short-term changes (default 33 ms) between the station queries are stored temporarily and processed during the next cycle. Every input can be defined individually as an alarm or a status by setting software parameters.
The digital inputs can be displayed with a local indicating unit (e.g. modu630 accessory).

Pulse counter (CI with DI)

At the digital inputs, counter inputs of potential-free contacts, opto-couplers or transistors with an open collector can be connected. The maximum pulse frequency may be up to 50 Hz . To ensure that switching contacts are recorded correctly, a de-bounce time of 5 ms is used. Pulses may be captured on falling, rising or both edges; the minimum pulse duration should be four times the debounce time.

Technical specifications of the inputs and outputs

Universal input	Measuring range	Resolution	Precision a \times measuring span $+\mathbf{b} \times$ measured value	
$\mathrm{Ni} / \mathrm{Pt} 1000$	$-50 \ldots+150^{\circ} \mathrm{C}$	$<0.05 \mathrm{~K}$	$\pm 0.5 \%$	$\pm 0.5 \%$
$\mathrm{U}(0 / 0.2 \ldots 1 \mathrm{~V})$	$0.02 \ldots 1.1 \mathrm{~V}$	$<0.1 \mathrm{mV}$	$\pm 0.5 \%$	$\pm 0.5 \%$
$\mathrm{U}(0 / 2 \ldots 10 \mathrm{~V})$	$0.15 \ldots 10.2 \mathrm{~V}$	$<1 \mathrm{mV}$	$\pm 0.5 \%$	$\pm 0.5 \%$
$\mathrm{I}(0 / 4 \ldots 20 \mathrm{~mA})$	$0.5 \ldots 22 \mathrm{~mA}$	$<0.02 \mathrm{~mA}$	$\pm 1 \%$	$\pm 2 \%$
R	$200 \ldots 2500 \Omega$	$<0.1 \Omega$	$\pm 0.2 \%$	$\pm 1 \%$
Pot $(\geq 1 \mathrm{k} \Omega)$	$2 \ldots .100 \%$	$<0.5 \%$	$\pm 1 \%$	$\pm 1 \%$

Example of calculating the accuracy: Measured value $20^{\circ} \mathrm{C}$. Measuring span: $-50^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}=$ 200K

Precision $=\mathrm{a} \times$ measuring span $+\mathrm{b} \times$ measured value $= \pm 0.5 \% \times 200 \mathrm{~K} \pm 0.5 \% \times 20^{\circ} \mathrm{C}= \pm 1 \mathrm{~K} \pm 0.1 \mathrm{~K}=$ $\pm 1.1 \mathrm{~K}$

Analogue output	Range of adjust- ment	Resolution	Accuracy
AO $(0 / 2 \ldots 10 \mathrm{~V} / 0 \ldots 20 \mathrm{~mA})$	$0.01 \ldots 10.2 \mathrm{~V}$	$<2 \mathrm{mV}$	1%
Binary input (0-I)	Universal input (UI)	Digital input (DI)	
Switching threshold inactive "0"	$>3 \mathrm{~V}$	$>4 \mathrm{~V}$	
Switching threshold active "1"	$<1.5 \mathrm{~V}$	$<2.5 \mathrm{~V}$	
Switching hysteresis	$>0.4 \mathrm{~V}$	$>0.4 \mathrm{~V}$	
Pulse counter	$\leq 3 \mathrm{~Hz}$	$\leq 50 \mathrm{~Hz}$	

Channel and terminal assignment

Description modu572	Channel	Schematic	Terminals	
			Signal	GND
Analogue output (0...10V)	0	a0	2	1
	1	a1	4	3
	2	a2	6	5
	3	a3	8	7
Digital input (Pulse counter Cl)	5	d5	10	9
	6	d6	11	
	7	d7	12	
Universal input (Ni/Pt1000/U/R/Pot) Current measurement only on channels 8,9 or terminals 13, 14	8	u8	13	
	9	u9	14	
	10	u10	15	16
	11	u11	17	18
	12	u12	19	20
	13	u13	21	
	14	u14	23	
	15	u15	24	
Reference voltage 1.23 V		Ref	22	

Connection of local operating unit

The I/O module can be complemented with local operating and indicating units (LOI). A unit can be installed and removed during operation (hot-pluggable) without affecting functions of the AS or I/O module.
For modu572, the following operating and indicating units can be used:

- EY-LO630F001: 16 LED indicators
- EY-LO670F001: 4 slide switches (automatic mode "A", 0...100\%) with LED indicators

The function corresponds to the standard EN ISO 16484-2:2004 for local override and indicating units.
Detailed information about the actuation function and LED indicator can be found in the PDS 92.081 for EY-LO 6**.

If an incompatible operating unit is connected, this status is indicated by the flashing of all LEDs (red and yellow); there is no risk of the I/O module being destroyed.

Note
Before insertion, all controller positions (AUTO) must be checked to ensure that no undesired signal values are issued. When the unit is removed, all outputs are operated with the automatic values of the AS or I/O module

In accordance with the standard, the local override and indication devices allow restricted operation of system components without the involvement of the AS intended for the application. Outputs of the AS or the I/O modules in manual position may change the value briefly when the user program is downloading. The local operating unit can be used to actuate the analogue outputs in the AS directly even without a user application (CASE Engine).

Disposal

When disposing of the product, observe the currently applicable local laws.
More information on materials can be found in the Declaration on materials and the environment for this product.

Connection diagram

Dimension drawing

Fr. Sauter AG
Im Surinam 55
CH-4016 Basel
Tel. +41 61-6955555
www.sauter-controls.com

[^0]: 1) On the primary side of modu525 base station (230 V~)
 2) Supply from modu525 base station
