Process Automation Solutions for Food \& Beverage Industries

SCS16X SANITARY VIBRATION FORK LEVEL SWITCH

WORKING PRINCIPLE

Piezoelectric element drives the fork and vibrates at its frequency. When medium contacts the fork, a frequency reduction occurs. The change of the frequency is then detected and transferred to the electronics, and is converted into a signal output. There is no electronic amplifier, free of sensitivity adjustment for different media.

APPLICATION

Liquid: Water, Oil, Beverage, Sauce, Alcohol, etc. Excellent performance at liquid applications with viscosity and foam
Sanitary process connections for CIP cleaning system / SIP disinfection system complied with USA FDA and 3A Standards.

FEATURE

- No calibration required
- Compact design, ideal for any installation
- Durable and maintenance-free
- IP69K Stainless Steel M12 electrical connection provides excellent performance at air-sealed environment, and allows up to 1 hour long submerged under water for intensive cleaning.
- Polishing rate (Ra) on request
- Power 10~35Vdc
- Suitable for liquid S.G. bigger than $0.7 \mathrm{~g} / \mathrm{cm}^{3}$; viscosity between $1 \sim 10000 \mathrm{cst}$.
- Working temperature up to 150 'C
- High / Low Fail-safe mode protection system
- Magnetic testing function to confirm the functions of peripheral equipment and wirings.
- Current overload protection. Output switch is off and LED alarm activated when current overload.
- Durable SUS316L housing
- High / Low level detection of any liquids
- Self-monitored function provides protection mode by switching off output when any abnormality (corrosive) inside the fork detected.(SCS164)

SPECIFICATION

Dimension (unit:mm)		
Model No.	SCS162	SCS163
Material	316L	316L
Protection Rate	IP65 / IP67	IP65 / IP67
Electrical Connection	DIN43650/Cable Connector/ M12x1	DIN43650/Cable Connector/ M12x1
Process Connection	Clamp	
Fork Length	40mm	
Power Supply	20~250Vac/Vdc,50/60Hz	12~55Vdc
Power Consumption	$<750 \mathrm{~mW}$	<825mW
Current Consumption	$<3 \mathrm{~mA}$	$<10 \mathrm{~mA}$
Overload Current	Min.10mA, Max.350mA	Max.350mA
Fork Vibration Frequency	Air, Approx. $1 \mathrm{KHz} \pm 10 \%$	
Switch Point	Vertical Installation: $12 \mathrm{~mm} \pm 3 \mathrm{~mm}$ from the tip of the fork Horizontal Installation: $8 \mathrm{~mm} \pm 1 \mathrm{~mm}$ from the crevice centre of the fork	
Failure Safe Protection	Max./Min.	
Display	Green: Power /Red: Switch Function	
Delay Time	Switch function activated in 1~3 sec. after fork covered by medium	
	Switch function activated in 1~3 sec. after uncovered by medium	
Setup Time	<3 s	
Contact Form	Contact less Electronic	NPN/PNP
Magnetic Testing	Confirm the function of the product with a magnet.	
Ambient Temp.	$-40^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$	
Storage Temp.	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$	
Working Temp.	$-40^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$	
Working Humidity	20\% ~ 80\% RH non-condensed	
Working Press.	Maximum 40 Bar	
Viscosity	1~10000 cst	
Specific Gravity	Liquid: $0.7 \mathrm{~g} / \mathrm{cm}^{3}$	

SPECIFICATION

Dimension (unit:mm)	
Model No.	SCS164
Material	316L
Protection Rate	IP67 / IP68 / IP69K
Electrical Connection	M12x1
Process Connection	3/4"G
Fork Length	$40 \mathrm{~mm} \pm 2 \mathrm{~mm}$
Power Supply	10~35Vdc
Power Consumption	<825mW
Current Consumption	$<15 \mathrm{~mA}$
Overload Current	Max.350mA $\pm 10 \%$
Fork Vibration Frequency	Approx. $1 \mathrm{KHz} \pm 10 \%$
Switch Point	Vertical Installation: $13 \mathrm{~mm} \pm 1 \mathrm{~mm}$ from the tip of the fork Horizontal Installation: $4 \mathrm{~mm} \pm 1 \mathrm{~mm}$ from the crevice centre of the fork
Repeatability	$\pm 0.5 \mathrm{~mm}$
Hysteresis	$3 \pm 0.5 \mathrm{~mm}$
Failure Safe Protection	Max./min
Display	Green: Power/Red: Error/Yellow: Switch function
Delay Time	Approx. 0.5 sec . after covered by medium Approx. 1 sec . after uncovered by medium
Setup Time	<2s
Contact Form	PNP
Magnetic Testing	Confirm the function of the product with a magnet.
Ambient Temp.	$-40^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$
Storage Temp.	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
Working Temp.	$-40^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
Working Humidity	20\% ~80\% RH non-condensed
Working Press.	Maximum 40 Bar
Viscosity	1~10000 cst
Specific Gravity	Liquid: $0.7 \mathrm{~g} / \mathrm{cm}^{3}$

FUNCTION DISCRIPTION

MAGNETIC TESTING:

After the switch has been properly installed, introduce corresponding power to activate the vibration of the fork. Approach a magnet to the testing area of the housing (shown below), so that relay output performs the switch function (N/O to $N / C ; N / C$ to N/O). It uses the LED indication (yellow LED) to switch the status, and the fork continuously vibrates. Removing the magnet from the testing area, the output and LED indication (yellow LED) will return as default and the fork continuously vibrates. This verification is to confirm the function and wiring of the product.

Example: SCS164

SENSING POINT :

AVertically Top Mounted

AHorizontally Side Mounted

Vertically Bottom Mounted

SCS164 WIRING CONNECTION:

Power Supply 10~35Vdc

Wiring connection is divided into MAX and MIN, as shown below.

MAX:

As shown on the figure, connect pin 1 to 0.5 A Fuse, and then connect it to L. External overload connects to pin 2 , and then connect it to N with pin 3.

MIN:
As shown on the figure, connect pin 1 to 0.5 A Fuse, and then connect it to L. External overload connects to pin 4, and then connect it to N with pin 3.
MAX.

NO.	1	2	3	4
Color	brown	white	blue	black

Connenction DC-PNP Plug M12x1

OUTPUT STATUS :

帝: Light ON O : Light OFF
※ Cable with LED indicator on request (Max. 5M).

FUNCTION DISCRIPTION

SCS162 WIRING CONNECTION :

Supplied power is AC/DC, so it is 2-wire wiring connection. Relay output connects to 2-wire ($\mathrm{L}+/ \mathrm{N}-$), as shown below.
© Low Level (Min.) Operation Mode: Connect pin 1 (brown) to N - terminal; Connect relay to pin 2 (black). Then, connect it to L+. Pin 4 (yellow-green) connects to ground.

High Level (Max.) Operation Mode:
Connect pin 1 (brown) to N - terminal; Connect relay to pin 2 \& 3 (black \& blue). Then, connect it to L+. Pin 4 (yellow-green) connects to ground.

Connection Diagram for M12x1, Cable

OUTPUT STATUS :

SCS162X series is 2-wire type power supply. Relay output connects to cable wire of power supply (L+/-). It provides Min. / Max. operation modes: When introduced 20~250, 50/60Hz $\mathrm{Vac} / \mathrm{Vdc}$ power, the power indicator, green LED, on top of the housing will be activated. Detailed description is shown below.
© Low Level (Min.) Operation Mode:
After proper installation, the fork vibrates in 3 seconds after power introduced. Relay status is N/O, and the red LED is OFF; when the fork is covered by medium, relay switches to N/C, and red LED turns ON.
© High Level (Max.) Operation Mode:
After proper installation, the fork vibrates in 3 seconds after power introduced. Relay status is N / C, and the red LED is ON; when the fork is covered by medium, relay switches to N/O, and red LED turns OFF.
(o) Flashing red indicates abnormal:

Possible causes overloads or short-circuit load back, equipment malfunction or wear tuning fork probe.

- - $_{\text {- }}$ It represents Blinking

Min. / Max. Switch Mode Corresponding Status

MAGNETIC TEST :

After the switch is installed and powered, magnetic test function can be performed accordingly. The testing point is marked on the housing label. User holds the magnet and moves it close to testing point, the output status will switch from NO. to NC. or NC to NO. and red LED would switch ON or OFF while fork continues to vibrate. When magnet is pulled away from the testing point, the output status and red LED would return as default while fork continues to vibrate. The purpose of testing is to confirm the wiring and functioning are correct.

Magnetic Test Diagram

FUNCTION DISCRIPTION

SCS163 WIRING CONNECTION :

DC Power supply, PNP / NPN output. Wiring connection is shown below.

PNP Wiring Connection :

© High Level (Max.) Operation Mode:
Pin 1 (brown) connects to N-. Pin 3 (blue) connects to L+. Output load connects to pin 2 (black), and then connect it to N -. Pin 4 (yellowgreen) connects to ground.
© Low Level (Min.) Operation Mode:
Pin 1 (brown) connects to N -. Pin 2 (black) connects to L+. Output load connects to pin 3 (blue), and then connect it to N -. Pin 4 (yellowgreen)connects to ground.

NPN Wiring Connection :

© High Level (Max.) Operation Mode: Pin 1 (brown) connects to L+. Pin 3 (blue) connects to N -. Output load connects to pin 2 (black), and then connect it to L+. Pin 4 (yellow-green) connects to ground.
© Low Level (Min.) Operation Mode: Pin 1 (brown) connects to L+. Pin 2 (black) connects to N -. Output load connects to pin 3 (blue), and then connect it to L+. Pin 4 (yellowgreen)connects to ground.

Connection Diagram for M12x1, Cable Connection for output PNP/NPN

OUTPUT STATUS :

SCS163X series provides Min. / Max. operation modes based on the pin that is connected to ground: When introduced 12~55Vdc, the power indicator, green LED, on top of the housing will be activated. Detailed description is shown below.
© Low Level (Min.) Operation Mode:
After proper installation, the fork vibrates in 3 seconds after power introduced. Transistor is non-contact, and red LED is OFF; when the fork is covered by medium, transistor switches to contact, and red LED turns ON.
High Level (Max.) Operation Mode:
After proper installation, the fork vibrates in 3 seconds after power introduced. Transistor is contact, and red LED is ON; when the fork is covered by medium, transistor switches to non-contact, and red LED turns OFF.
(o) Flashing red indicates abnormal:

Possible causes overloads or short-circuit load back, equipment malfunction or wear tuning fork probe.

- It represents Blinking

Min. / Max. Switch Mode Corresponding Status

MAGNETIC TEST :

After the switch is installed and powered, magnetic test function can be performed accordingly. The testing point is marked on the housing label. User holds the magnet and moves it close to testing point, the output status will switch from NO. to NC. or NC to NO. and red LED would switch ON or OFF while fork continues to vibrate. When magnet is pulled away from the testing point, the output status and red LED would return as default while fork continues to vibrate. The purpose of testing is to confirm the wiring and functioning are correct.

Magnetic Test Diagram

INSTALLATION

HORIZONTAL INSTALLATION:

1. Avoid material inlets

2. The position hole must face upward, otherwise, the flowing medium might press the fork and lead to product failure.

VERTICAL INSTALLATION:

1. When installed in a pipe with flowing liquid, the gap of the two forks shall be in the same direction as the liquid flowing direction.

2. Avoid material inlets

MODEL NUMBER / ORDER CODE COMPARISON TABLE

Model Number	Order Code
SCS162	SCS10000-AA
SCS163	SCS10000-AB
SCS164	SCS20000-AA

ORDER INFORMATION

(1) (18) Probe material

MC: SUS 316L
(10) Tuning fork surface roughness

A: $\mathrm{Ra}<0.3$
B: $\mathrm{Ra}<0.8$
C: $\mathrm{Ra}<1.5$
(21) Wiring

A: M12 X $1\left(180^{\circ} \mathrm{C}\right), 2 \mathrm{~m}$
B: M12 X $1\left(90^{\circ} \mathrm{C}\right), 2 \mathrm{~m}$
C: Cable,2m
D: DIN Connector
(21) (27) (27) (24) Length

Code	Probe Length
$0100 \sim 0250$	$100 \sim 250 \mathrm{~mm}$

(21) (22) (23) (24) Length

Code	Probe Length
0069~0069	69 mm

EGS SANITARY MAGNETOSTRICTIVE LEVEL TRANSMITTER

WORKING PRINCIPLE

Magnetostrictive Level Transmitter is based on the principle that two different magnetic fields intersect create a torsion wave. Computing the time cycle that is needed to detect this signal will get the exact distance (D).

The two magnetic fields, one comes from dynamic magnet outside the transmitter, and the other is from current pulse on the metal wire inside the transmitter. The current pulse is generated by current of the transmitter. When the two magnetic fields intersect, a torsion wave is generated. This signal travels back at a fixed speed to the sensor of the transmitter in the way of ultrasound. The time cycle from the time when a current pulse is generated to the pulse travels back the sensor multiples fixed speed will get the exact distance of the dynamic magnet. The process is non-stop. Whenever the magnet moves, new location will be detected immediately. Output signal is absolute output.

FEATURE

High resolution and high accuracy, easy installation, free of maintenance and calibration, stable and reliable Anti-pollution, anti-dust, resistant to high pressure
Housing is made of corrosive resistance seamless Stainless Steel.
Remote control via PC
Working temperature $-40 \sim+125^{\prime} \mathrm{C}$
Oil/Water interface detection

APPLICATION

- High temperature disinfection $\left(125^{\circ} \mathrm{C}\right)$
- High pressure cleaning
- CIP cleaning system
- SIP disinfection system
- Pasteurization system
- Pharmaceutical equipment
- Beverage, drinking water, edible oil
- Food filling and level control
- Temperature measurement

Dimension (Unit:mm)	
Model No.	EGS15
Housing	SUS316
Wetted Parts	SUS316/SUS316L
Polishing (um)	$\mathrm{Ra}<0.3$ or $\mathrm{Ra}<0.5$ or $\mathrm{Ra}<0.8$
Measuring Range	25mm~2500mm
Temperature Sensor	PT100
Temperature Accuracy	$\pm 1^{\circ} \mathrm{C}$
Ambient Temp.	$-40 \sim 85^{\circ} \mathrm{C}$
Working Temp.	-40~125 ${ }^{\circ} \mathrm{C}$
Power Supply	$12 \sim 30 \mathrm{Vdc}$
Output Current Mode	4~20mA/20~4mA
Output Current Resistance	<500(ohm)
Output Voltage Mode	0~10V, 10~0V, $0 \sim 5 \mathrm{~V}, 5 \sim 0 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$
Output Voltage Ripple	<10mV
Output Voltage Resistance	$2 \mathrm{~K} \Omega$
Sampling Rate	500 time / sec.
Linearity	$\pm 100 \mathrm{um@} 000 \mathrm{~mm}$ or $\pm 0.02 \%$ FS
Repeatability	$\pm 0.002 \%$ F.S.
Hysteresis	$\pm 0.004 \%$ F.S.
Communication Output	RS485
Protection Rate	IP67(Housing)/IP69K(Probe)
Connection	1-1/2"~2"(Sanitary)
Working Press.	10bar(Max)

INSTALLATION

- 12Vdc~30Vdc
- The product is calibrated by the manufacturer. Users shall not change the measuring ranges by themselves.
- Do not bend the stem as it will destroy the measurement accuracy of the product.
- Do not change the float of the product as it will affect the measurement accuracy of the product.
- The product can be installed directly without taking off the float if the diameter of the process connection hole is bigger than the float.
- If the diameter of the float is bigger than the diameter of the process connection hole, it is necessary to take off the float before installing. While re-installing the float, mark on the float has to be pointing at the direction of the product housing.
- The stopper must be fixed well on the stem core.
- Please keep the float from dropping down as attack on the float might result in magnet breaking inside the float which will lead to product failure.
- The product should be well packed by vibration-absorbed packing material, such as, bubble or foam bags, to ensure safety during delivery.
- Due to accuracy concern, do not open then cover of the housing.

INTALLATION METHOD IF THE FLOAT HAS TO BE TAKEN OFF BEFORE INSTALLATION

STEP 1:

Remove the ring clip from the stem.

STEP 3:
Install the product into the tank and screw tight the process connection.

STEP 2:

Take off the float.

STEP 4:
Install back the float to the stem, and the mark on the float should be pointing at the direction of the product housing.

STEP 5:
Screw the ring clip well on the core of the stem.

MODEL / NUMBER ORDER CODE COMPARISON TABLE / ORDERING INFORMATION

Model Number	Order Code
EGS15	EGX40000-A1AI

(93) Surface roughness

A: $\mathrm{Ra}<0.3$
B: Ra<0.5
C: $\mathrm{Ra}<0.8$
(30) (31) (32) (33) Length

Code	Probe Length
$0025 \sim 2500$	$25 \sim 2500 \mathrm{~mm}$

SPS SANITARY THERMAL DISPERSION FLOW SWITCH

WORKING PRINCIPLE

Thermal Dispersion Flow Switch is a reliable and accurate flow switch based on thermal dispersion principle. Two temperature sensors are built inside the probe of the product. One sensor is heated, and the other is used as a reference to detect the temperature of the medium. This creates a temperature difference between two sensors, and switch changes state once it reaches the set point. Temperature difference is an inverse ratio to the flow velocity. Material of the probe and housing are stainless steel or engineering plastic. Since the device is without moving parts, there is no wear and tear problem.

FEATURE

Compared to the traditional paddle type flow switch, thermal dispersion flow switch offers high sensitivity, no limitation on installing location, and no moving parts tear and wear. Suitable for liquid application with impurities. Different materials on request for food / food additives application. Probe lengths are customized to meet any application. Three different signal outputs are available for selection.

APPLICATION

Food, Beverage, Drinking Water, Edible Oil, Food Process Filling, Pharmaceutical, High Temperature Disinfection, etc. Any pipes flow control.

SPECIFICATION

Dimension (Unit:mm)			
Model No.	$\begin{gathered} \text { SPS200- } \square \square \square-\square-\square \\ \text { Compact Type } \end{gathered}$	SPS201- \qquad Extension Probe Type	SPS202- \qquad High temperature Type
Measuring Range (Velocity)	Water: $1 \sim 150 \mathrm{~cm} / \mathrm{s}$ Oil: $3 \sim 300 \mathrm{~cm} / \mathrm{s}$		
Measuring Range (Velocity)	$-20 \sim 80^{\circ} \mathrm{C}$		
Working Temp.	$-20 \sim 80^{\circ} \mathrm{C}$		$-20 \sim 120^{\circ} \mathrm{C}$
Alarm	Transistor: NPN / PNP ($<400 \mathrm{~mA}$) Relay: $1 \mathrm{~A} / 30 \mathrm{Vdc}, 0.3 \mathrm{~A} / 125 \mathrm{Vac}(\mathrm{N} / \mathrm{O}$ or $\mathrm{N} / \mathrm{C})$		
Working Press	100 bar (max.)		
LED Display (Velocity below set point)	Red LED ON, OpenYellow LED ON, Close4 Green LED indicates the speed of flow, the output turns on		
Housing	SUS316L		
Wetted Parts	SUS 316L		
Protection Rate	IP67		
Warm-Up	Approx. 15 seconds		
Process Connection	3A		
Power Supply	$19 \sim 30 \mathrm{Vdc}$		
Power Consumption	50 mA (max.)		
Electrical Connection	3-wire NPN / PNP: Power-Brown; GND-Blue; Output-Black 4-wire Relay: Power-Brown; GND-Blue; Relay contact-Green, Black		
Accessory	Waterproof Cable Conduit		

INSTALLATION

(1). "a" has to be 4 times bigger than the internal diameter of the pipe, "d". (See Fig. 1).
(2). Liquid inside the pipe must be bubble-free to ensure alarm working properly. (See Fig. 2).
(3). When the pipe is not fully filled with liquid, SPS must be installed underneath the pipe,and liquid level has to be higher than the sensing probe. (See. Fig. 3)
(4). SPS must be screwed tightly at installation to avoid liquid leakage from the pipe and cause danger. SPS can be installed at any angle. For best sensitivity and response speed, please refer to the installation in Fig. 4.
(5). For liquid that contains impurities or particle, please install a filter upstream to protect SPS from being crashed by impurities.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

CONNECTOR DIAGRAM

Fig. 5. Electrical Connection Diagram (NPN \& PNP Output)

WIRING

Fig. 7, NPN Output

Fig. 8, PNP Output

Fig. 6

4-wire

Fig. 10, Relay Output (NO)

Fig. 11, Relay Output (NC)

MODEL / NUMBER ORDER CODE COMPARISON TABLE / ORDERING INFORMATION

Model Number	Order Code
SPS200	SPX10300-A
SPS201	SPX10300-B
SPS202	SPX13200-A

MB: SUS316
MC: SUS316L
(18) Output signal

A: NPN
B: PNP
C: Relay $1 \mathrm{~A} / 30 \mathrm{Vdc}, 0.3 \mathrm{~A} / 125 \mathrm{Vac}(\mathrm{NO})$
D: Relay 1A/30Vdc, 0.3A/125Vac(NC)
(11) (20) (21) (22) Length

Code	Probe Length
$0025 \sim 0200$	$25 \sim 200 \mathrm{~mm}$

Global Network

