

Fixed detectors For flammable, toxic or oxygen gases

Xgard

Xgard Type 1: Intrinsically safe toxic and oxygen gas detector Xgard Type 2:

Flameproof toxic and oxygen gas detector

Xgard Type 3: Flameproof flammable gas detector

Xgard Type 4: Flameproof high temperature flammable gas detector Xgard Type 5: Flameproof flammable gas detector with 4-20mA output Xgard Type 6: Flameproof thermal conductivity type gas detector

Xsafe: Safe area flammable gas detector

The Xgard range of gas detectors has been specifically designed to meet your requirements. The dangers presented by toxic and flammable gases as well as oxygen deficiency vary with each application. Xgard offers three different sensor concepts so you can choose exactly what you need for your site.

Xgard is available in flameproof, intrinsically safe or safe area formats for use in all environments, whatever the classification.

Xgard, gas detectors you can trust.

Low cost of ownership

Xgard detectors are designed for easy installation and maintenance to keep costs down.

The three junction box options are all designed to make replacement of sensors and sinters extremely simple. Spare sensors simply plug-in.

Xgard Types 1 and 2 utilise oxygen sensors with a 2-year life-span, so sensor replacement costs are halved when compared to conventional oxygen detectors.

Many spare parts are common to all Xgard models, which keeps spares holding requirements to a minimum.

Flexible installation options

Xgard is designed for either wall or ceiling mounting without the need for additional brackets.

Xgard can accommodate M20, $\sqrt[4]{2}$ NPT or $\sqrt[3]{4}$ NPT cable glands to suit all site requirements.

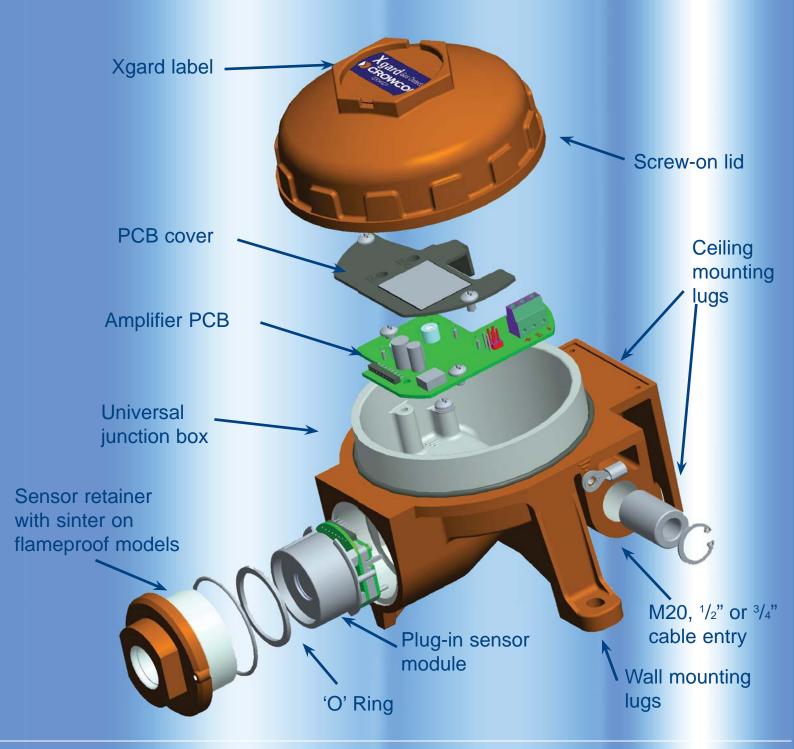
High temperature models are available for hot environments (up to 150°C).

Accessories are available for duct mounting, and sampling applications as well as remote gassing for simple sensor checking.

Wide range of sensors

Xgard offers an extremely wide range of sensors for all applications.

Poison resistant pellistors, for all flammable detection needs including hydrocarbons, hydrogen, ammonia, jet fuel, leaded petrol and vapours containing halogens. Electrochemical sensors are used to detect a vast range of toxic gases and oxygen.


Thermal conductivity sensors are available to monitor volume concentrations of gases.

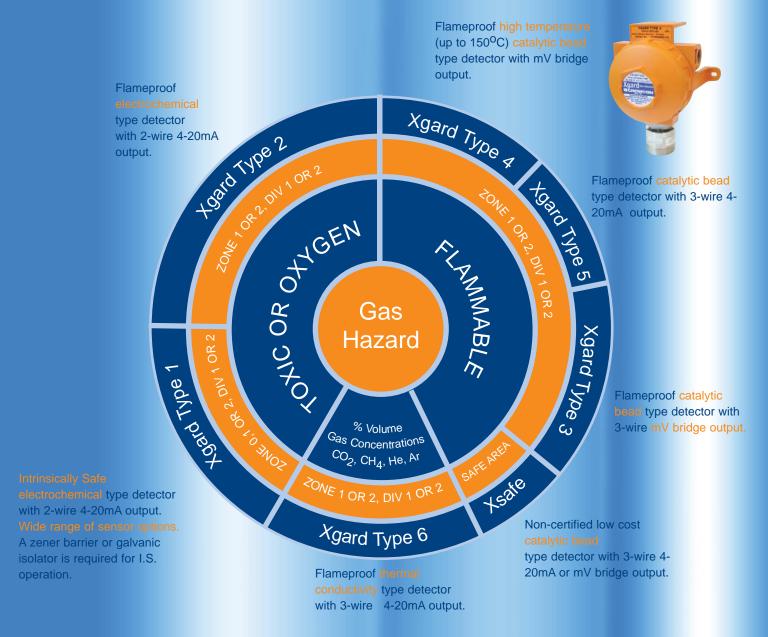
Rugged and reliable

Xgard is manufactured using a choice of three materials: glass reinforced nylon, highly durable aluminium with a tough polyester coating, or 316 stainless steel for ultimate corrosion resistance. All versions are designed to operate even in the harshest conditions.

Spray deflectors and weatherproof caps are available for use in areas subject to regular wash-downs, or offshore environments.

Xgard

Accessories (all accessories require an Accessory Adaptor to be fitted to the Xgard junction box)



Detector Selector

The Xgard range offers a comprehensive selection of fixed point gas detectors that meet the diverse requirements for flammable and toxic gas detection and oxygen monitoring in industries throughout the world.

This diagram is designed to help you choose the correct Xgard detector to suit your needs.

Ordering Requirements

The following code is designed to help in the selection of the correct detector. The product reference number should be compiled by inserting the appropriate integer in each box.

Detector	Type No.	Code	Output	Junction Box	c Code	Cable Entry	Code	Certification	Code	Gas Type	Range
XGARD	Type 1 *1	1		Standard*1	Α	M20	M20	ATEX	AT	Abbreviated up	From selection
XSAFE	Type 2	2		Stainless St	eel*2 S	½"NPT	1/2	UL	UL	to 8 characters	shown on table
	Type 3	3				³ /₄"NPT	3/4				
	Type 4	4									
	Type 5	5									
	Type 6	6									
	XSAFE	XS	mV or mA								

^{*1:} Xgard Type 1 ATEX certified detectors will be supplied in a glass-reinforced nylon enclosure as standard, or in a 316 stainless steel enclosure as an option. Xgard Type 1 UL certified detectors and all other Xgard Types will be supplied in aluminium as standard, or in a 316 stainless steel enclosure as an option.

^{*2:} The stainless steel option is not available for Xsafe and Xgard type 4.

Example product reference for an I.S. 0-25ppm H2S detector with ATEX certification and M20 cable entry in a standard (nylon) junction box: XGARD/1/A/M20/AT/H2S/25.

Case (yell Cas	Cooking	LTCL (nnm)	CTEL (nnm)	Ranges Available:	Ranges Available:	Danges Availables	Ranges Available:
Acadyshare (CyH ₂) 2,3 (2-9) 900 Ammonia (WH ₂) 25 95 95 90, 1000 gam Argane (Arth 1) 15 (15) 3,6 (20) 900, 1000 gam Argane (Arth 2) 905 Argane (Arth 3) 905 Argan	Gas type	LTEL(ppm)	STEL(ppm)			Ranges Available:	
Ammonia (NH-J)		LEL(%VOI)	UEL(%VOI)	туре т	Type 2	Type 3,4,5 & Asale	туре о
Ammonia (NH-J)	Acetylene (C.H.)	23 (24)	100			0-100% lel*	
Agron (A)				50 100 250			
Appen (A)	7 (r ti 13)					0 20 /0.0.	
Asine (Ash) 0.05 - 1 ppm	Argon (Ar)	-	-	осо, тосо рр			
Bomme (B/s)		0.05	_	1 ppm			
Distance (CA-L)			0.2				
Carbon Diouble Co Co Co Co Co Co Co C				о, о рр		0-100% lel*	
(CO_1)						0 10070101	
Carbon Monoxide 30 200 300, 100, 150, 200, 250, 30, 100, 300, 500, 1000 ppm 250, 300, 500, 500, 500, 500, 500, 500, 5							
CO CO SO				50, 100, 150, 200, 250,	50, 100,		
Chlorine (Ci.) - 0.5			200				
Chlorine Dioxide (CIO ₂) Dioxonare (B,H ₂) Dioxonare (D,H ₂)	(00)			000, 000, 1000 pp.iii	200,000,000,1000 ppm		
Chlorine Dioxide (CIO ₂) Dioxonare (B,H ₂) Dioxonare (D,H ₂)	Chlorine (Cl.)	_	0.5	3 5 10 20 50 100 ppm			
CiO_O		0.1					
Display (B,H ₂) 0.1							
Elanse (C,H ₂)		0.1	_	1 ppm			
Emylene (C;H ₄) 2.3 (2.7) 36			15.5	1 ppiii		0-100% lel*	
Enylene Oxide (C,H,O)		1.1					
C.H.O)				10 50 100 ppm	10. 50. 100 ppm	0 10070 101	
Fluorine (F ₂) 1 1 1 1 1 1 ppm Germane (GeH ₄) 0.2 0.6 2 ppm Hollium (He) - Hydrogen (H ₃) 4 77 (80) 200, 2000 ppm 2%, 4% vv 2%, 4%		3		10, 30, 100 ppili	10, 50, 100 ppiii		
Germane (GeH _a) 0.2 0.8 2 ppm		4	1	1 nnm			
Helium (He)							
Hydrogen (H ₊) Hydrogen (H ₊) Hydrogen Chloride (HCI) Hydrogen Cyanide (HCN) Hydrogen Fluoride (HF) Hydrogen Sulphide (H ₊) Hydrogen Sulphide (0.2	0.6	2 ррпп			
2%, 4% vv 2%, 4% vv 2%, 4% vv 2%, 4% vv 0-20%,25%,30%, 50% vv (H ₂ in N ₂) 10, 25 ppm		-	77 (00)	200, 2000 ppm	200, 2000 DDM	0.4000/ lel*	0-5% 10% 50% vv (in air)
Hydrogen Chloride (HCI)	nydrogen (n ₂)	4	77 (80)			0-100% lei	
Hydrogen Chloride (HCl)				270, 170 **	270, 170 **		
(HCI) Hydrogen Cyanide (HCN) Hydrogen Fluoride (HF) Hydrogen Sulphide (HF,S) Diamond Cyanide (HF,S) Sulphide (HF,S) Sulphi			_	40.05			3070 VV (112 111 142)
Hydrogen Cyanide (HCN) Hydrogen Fluoride (HF) Hydrogen Sulphide (HF		1	5	10, 25 ppm			
(HCN) Hydrogen Fluoride (HF) Hydrogen Sulphide (H ₂ S) EPG 2 10 Methane (CH ₂) Nitric Oxide (NO) Nitrogen Dioxide (NO ₂) Cozone (O ₃) Pentane (C ₂ H ₁₇) Hydrogen (C ₂ H ₁₇) Hosphine (PH ₃) Propane (C ₂ H ₂) Nitrogen Dioxide (H ₂ S) 10 100 100 100 100 100 100 10	* *		40	05.00			
Hydrogen Fluoride (HF) Hydrogen Sulphide (H-S) Hydrogen Sulphide (H-S) Hydrogen Sulphide (H-S) How Sulphide		-	10	25, 30 ppm			
(HF) Hydrogen Sulphide (H ₃ S) LPG 2 10 Methane (CH ₄) Nitric Oxide (NO) Siri Nitrogen Dioxide (NO ₂) Ozone (O ₃) Pentane (C ₃ H ₁₂) 1.4 (1.5) 600ppm 1800ppm 18	* *	4.0		40			
Hydrogen Sulphide (H ₂ S)		1.8	3	10 ppm			
H₂S) 100, 200, 250, 300, 100,200 ppm 100,200 ppm LPG 2 10 0-100% lel Methane (CH₄) 4.4 (5) 17 (15) 0-100% lel Nitric Oxide (NO) 5** 15** 25, 50, 100 ppm Nitrogen Dioxide (NO₂) 1 1 5, 10, 30, 50, 100 ppm Ozone (O₃) - 0.2 1 ppm Oxygen (O₂) - - 25% Vol Pentane (C₅H₁₂) 1.4 (1.5) 7.8 (7.8) 0-100% lel* 600ppm 1800ppm 1800ppm Petrol 1.3 6 0-100% lel* Phospene (COCl₂) 0.02 0.06 1 ppm Propane (C₃H₂) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH₁) 0.5 1 1 ppm Sulphur Dioxide (SO₂) 3.6 33 (VCM) (CH₂=CHCl) 3 - 0-100 ppm*² Volatile Organics - 0 -100 ppm*²	* *	-	40	5 40 00 05 50	5 40 00 05 50		
LPG		5	10				
LPG 2 10 0-100% lel Methane (CH ₄) 4.4 (5) 17 (15) 0-100% lel Nitric Oxide (NO) 5** 15** 25, 50, 100 ppm Nitrogen Dioxide (NO ₂) 1 5, 10, 30, 50, 100 ppm Ozone (O ₃) - 0.2 1 ppm Oxygen (O ₂) - - 25% Vol Pentane (C ₃ H ₁₂) 1.4 (1.5) 7.8 (7.8) 600ppm 1800ppm 0-100% lel* Petrol 1.3 6 Phosgene (COCl ₂) 0.02 0.06 1 ppm Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₂ H ₉) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide (SO ₂) 1 10, 20, 50, 100, 250 ppm Vinyl Chloride (NOM) (CH ₂ =CHCl) 3 - 0-100 ppm**	(H ₂ S)				100,200 ppm		
Methane (CH ₄) 4.4 (5) 17 (15) 0-100% lel Nitric Oxide (NO) 5°° 15°° 25, 50, 100 ppm Nitrogen Dioxide (NO ₂) 1 1 5, 10, 30, 50, 100 ppm Ozone (O ₃) - 0.2 1 ppm Oxygen (O ₂) - - 25% Vol Pentane (C ₅ H ₁₂) 1.4 (1.5) 7.8 (7.8) 600ppm 1800ppm Petrol 1.3 6 Phosgene (COCl ₂) 0.02 0.06 Phosphine (PH ₃) 0.1 0.2 Propane (C ₃ H ₀) 1.7 (2.2) 10.9 (10) Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide (SO ₂) 1 1 10, 20, 50, 100, 250 ppm Vinyl Chloride (SO ₂) 3.6 33 0-100% lel* Volatile Organics - 0 - 100 ppm* ²		_		1000 ppm			
Nitric Oxide (NO) 5" 15" 25, 50, 100 ppm Nitrogen Dioxide (NO ₂) 1 1 5, 10, 30, 50, 100 ppm Ozone (O ₃) - 0.2 1 ppm Oxygen (O ₂) - - 25% Vol Pentane (C ₈ H ₁₂) 1.4 (1.5) 7.8 (7.8) 600ppm 1800ppm 0-100% lel* Petrol 1.3 6 Phospene (COCl ₂) 0.02 0.06 1 ppm Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₃ H ₈) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide (SO ₂) 250 ppm 0-100% lel* Vinyl Chloride (SO ₂) 3.6 33 0-100% lel* Volatile Organics - 0 - 100 ppm*² 0 - 100 ppm*²							
Nitrogen Dioxide (NO₂)				05.50.400		0-100% lel	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			15**				
Ozone (O ₃) - 0.2 1 ppm Oxygen (O ₂) - - 25% Vol - Pentane (C ₃ H ₁₂) 1.4 (1.5) 7.8 (7.8) 0-100% lel* 600ppm 1800ppm 0-100% lel* - Phosgene (COCl ₂) 0.02 0.06 1 ppm Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₃ H ₈) 1.7 (2.2) 10.9 (10) Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide (SO ₂) 1 10, 20, 50, 100, (SO ₂) Vinyl Chloride (SO ₂) 250 ppm Vinyl Chloride (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm* ²			1	5, 10, 30, 50, 100 ppm			
Oxygen (O ₂) - - 25% Vol 25% Vol Pentane (C ₆ H ₁₂) 1.4 (1.5) 7.8 (7.8) 0-100% lel* 600ppm 1800ppm 0-100% lel* Petrol 1.3 6 0-100% lel* Phosgene (COCl ₂) 0.02 1 ppm Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₃ H ₈) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide (SO ₂) 1 10, 20, 50, 100, 250 ppm Vinyl Chloride (SO ₂) 3.6 33 0-100% lel* VCM) (CH ₂ =CHCl) 3 - 0 - 100 ppm* ²			0.0	4			
Pentane (C ₅ H ₁₂) 1.4 (1.5) 7.8 (7.8) 0-100% lel* 600ppm 1800ppm 0-100% lel* Petrol 1.3 6 0-100% lel* Phosgene (COCl ₂) 0.02 0.06 1 ppm Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₃ H ₈) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide 1 1 10, 20, 50, 100, (SO ₂) 250 ppm Vinyl Chloride 3.6 33 0-100% lel* (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm* ²		-	0.2		050()(-1		
600ppm 1800ppm Petrol 1.3 6 0-100% lel* Phosgene (COCl ₂) 0.02 0.06 1 ppm Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₃ H ₈) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide 1 1 10, 20, 50, 100, (SO ₂) 250 ppm 250 ppm Vinyl Chloride 3.6 33 0-100% lel* (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm* ²		- 4 (4 =)	- (7.0)	25% VOI	25% Vol	0.4000/ 1.15	
Petrol 1.3 6 0-100% lel* Phosgene (COCl ₂) 0.02 0.06 1 ppm Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₃ H ₈) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide 1 1 10, 20, 50, 100, 250 ppm Vinyl Chloride 3.6 33 0-100% lel* (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm* ²	Pentane (C ₅ H ₁₂)					0-100% lel*	
Phosgene (COCl ₂) 0.02 0.06 1 ppm Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₃ H ₈) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide 1 1 10, 20, 50, 100, (SO ₂) Vinyl Chloride 3.6 33 0-100% lel* (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm* ²	Detroil					0.4000/ 1.1*	
Phosphine (PH ₃) 0.1 0.2 1 ppm Propane (C ₃ H ₆) 1.7 (2.2) 10.9 (10) 0-100% lel Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide 1 1 10, 20, 50, 100, 250 ppm Vinyl Chloride 3.6 33 0-100% lel* (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm* ²				4		U-100% IeI*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Silane (SiH ₄) 0.5 1 1 ppm Sulphur Dioxide (SO ₂) 1 10, 20, 50, 100, 250 ppm Vinyl Chloride (VCM) (CH ₂ =CHCl) 3.6 33 (O-100% lel*) Volatile Organics - 0 - 100 ppm* ²				1 ppm		0.4000/ 1.1	
Sulphur Dioxide 1 1 10, 20, 50, 100, (SO ₂) 250 ppm Vinyl Chloride 3.6 33 (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm*²			10.9 (10)			0-100% lel	
(SO ₂) 250 ppm Vinyl Chloride 3.6 33 (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm*²			1				
Vinyl Chloride 3.6 33 0-100% lel* (VCM) (CH ₂ =CHCl) 3 - Volatile Organics - 0 - 100 ppm*²		1	1				
(VCM) (CH ₂ =CHCI) 3 - Volatile Organics - 0 - 100 ppm*²				250 ppm			
Volatile Organics 0 - 100 ppm*2			33			0-100% lel*	
		3	-				
(VO)*2		-	-	0 - 100 ppm*2			
	(VO)*2						

Notes: Other sensors and ranges may be available, please contact Crowcon.

*Ranges not available for Xsafe or Xgard Type 4

†Contact Crowcon for availability

LTEL & STEL figures are derived from the UK HSE document: EH40 Oct 07. Alternative thresholds may apply in countries outside of the UK

LEL figures derived from EN61779-1: 2000

*1 Current limits advised in the UK

*2 Nominal 0-100ppm range with Carbon Monoxide (CO). Contact Crowcon for a full list of gases that can be detected using this sensor

Xgard Specifications

Xgard Model	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Xsafe
lunction box	ATEX Certified: Glass-	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium
naterial	reinforced nylon or	or 316 Stainless	or 316 Stainless		or 316 Stainless	or 316 Stainless	
	316 S/S UL Certified:	Steel	Steel		Steel	Steel	
	Aluminium or 316 S/S						
Dimensions	156 x 166 x	156 x 166 x	156 x 166 x	195 x 166 x	156 x 166 x	156 x 166 x	156 x 166 x
Diffictioions	111mm (6.1 x 6.5	111mm (6.1 x 6.5	111mm (6.1 x 6.5	111mm (7.6 x 6.5	111mm (6.1 x 6.5	111mm (6.1 x 6.5	111mm (6.1 x 6.5
	*	`	,	*	,	*	`
	x 4.3 inches)	x 4.3 inches)	x 4.3 inches)	x 4.3 inches)	x 4.3 inches)	x 4.3 inches)	x 4.3 inches)
Neight	Nylon 0.5Kg (1.1lbs)	Alloy 1Kg (2.2 lbs)	Alloy 1Kg (2.2 lbs)	Alloy 1Kg (2.2 lbs)	Alloy 1Kg (2.2 lbs)	Alloy 1Kg (2.2 lbs)	1Kg (2.2 lbs)
	Alloy 1Kg (2.2 lbs)	316 S/S: 3.1kg (6.8 lbs)	316 S/S: 3.1kg (6.8 lbs)	316 S/S: 3.1kg (6.8 lbs)	316 S/S: 3.1kg (6.8 lbs)	316 S/S: 3.1kg (6.8 lbs)	
	316 S/S: 3.1kg (6.8 lbs)						
ngress	IP65, IP66 with	IP65, IP66 with	IP65, IP66 with	IP54	IP65, IP66 with	IP65, IP66 with	IP65, IP66 with
protection	weatherproof cap	weatherproof cap	weatherproof cap		weatherproof cap	weatherproof cap	weatherproof cap
Cable entries	1 x M20 or	1 x M20,	1 x M20,	1 x M20,	1 x M20,	1 x M20.	1 x M20, or
Jabio oritioo	1/2" NPT	· · · · · · · · · · · · · · · · · · ·	1/2" NPT or 3/4" *NPT		,	1/ ₂ " NPT or 3/ ₄ " *NPT	1/ ₂ " NPT
	_						_
	on right-side	on right-side	on right-side	on right-side	on right-side	on right-side	on right-side
Terminations	0.5 to 2.5mm ²	0.5 to 2.5mm ²	0.5 to 2.5mm ²	0.5 to 2.5mm ²	0.5 to 2.5mm ²	0.5 to 2.5mm ²	0.5 to 2.5mm ²
	(20 to 13awg)	(20 to 13awg)	(20 to 13awg)	(20 to 13awg)	(20 to 13awg)	(20 to 13awg)	(20 to 13awg)
Sensor type	Electrochemical	Electrochemical	Catalytic bead	316 s/s	Catalytic bead	Thermal	Catalytic bead
				sensor housing		conductivity	
				with catalytic		,	
				beads			
Operating	-20 to +50°C	-20 to +50°C	-40 to +80°C		-40 to +55°C	+10 to +55°C	-40 to +80°C
Operating				-20 to +150°C			
temperature	(-4 to 122°F)	(-4 to 122°F)	(-40 to 176°F)	(-4 to 302°F)	(-40 to 131°F)	(50 to 131°F)	(-40 to 176°F)
	(typical)	(typical)					(mV version)
	(to +55°C	(to +55°C					-40 to +55°C
	intermittent)	intermittent)					(-40 to 131°F)
	,	,					(mA version)
Humidity	0-90% RH	0-90% RH	0-99% RH	0-99% RH	0-99% RH	0-90% RH	0-99% RH
lamaty							
	non-condensing	non-condensing	non-condensing	non-condensing	non-condensing	non-condensing	non-condensing
Repeatability	<2% FSD (Typ.)	<2% FSD (Typ.)	<2% FSD (Typ.)	<2% FSD (Typ.)	<2% FSD (Typ.)	<2% FSD (Typ.)	<2% FSD (Typ.)
Zero drift	<2% FSD / month	<2% FSD / month	<2% FSD / month	<2% FSD / month	<2% FSD / month	<2% FSD / month	<2% FSD / month
	(Typ.)	(Typ.)	(Typ.)	(Typ.)	(Typ.)	(Typ.)	(Typ.)
Response time	T90 <10s Oxygen	T90 <10s Oxygen	T90 <15s (Typ)	T90 <15s (Typ)	T90 <15s (Typ)	T90 <15s (Typ)	T90 <15s (Typ)
	T90 <30s to 120s	T90 <30s to 120s	()1 /	() ()	()1 /	()1 /	()1 /
	Toxic (sensor dependant)	Toxic (sensor dependant)					
Operating	8 – 30V dc	8 – 30V dc	2.0V dc +/- 0.1V	2.0V dc +/- 0.1V	10 – 30V dc	10 – 30V dc	10 – 30V dc
	0 - 30 V uc	0 - 30 V uc			10 - 30 V uc	10 - 30 V uc	
voltage			(Typ)	(Typ)			(mA version)
							2.0V dc
							(mV version)
Power	24mA max.	24mA max.	300mA (Typical)	300mA (Typical)	50mA @ 24V	50mA @ 24V	mA version:
requirements					dc 1.2W	dc 1.2W	50mA @ 24V
							dc 1.2W
							mV version:
	0 1 10-	0 1 165 1			0 1 100	0 1 100	300mA (Typ.)
Electrical	2-wire 4-20mA	2-wire 4-20mA	3-wire mV bridge	3-wire mV bridge	3-wire 4-20mA	3-wire 4-20mA	mA version:
output	(current sink)	(current sink)	Typical signal	Typical signal	(current sink or	(current sink or	3-wire 4-20mA
			12-15mV / %lel	>10mV / %lel	source)	source)	(current sink or
			CH4	CH4	,	,	source)
			5				mV version:
							3-wire mV bridge
							Typical signal
							12-15mV / %lel
							CH4
Approvals	ATEX:⟨εx⟩ II 1 G	ATEX:⟨εx⟩ II 2 GD	ATEX:⟨εx⟩ II 2 GD	ATEX:⟨εx⟩ II 2 G	ATEX: ⟨εx⟩ II 2 GD	ATEX: ⟨εx⟩ II 2 GD	Not certified
• •	Exia IIC T4	Exd IIC T6	Exd IIC T4	Exd IIC T3	Exd IIC T6	Exd IIC T6	for use in a
	(Tamb –40 to						hazardous
	· ·	(Tamb –40 to	(Tamb –40 to	(Tamb –20 to	(Tamb –40 to	(Tamb –40 to	
	+55°C)	+50°C)	+80°C)	+150°C)	+50°C)	+50°C)	environment.
	UL/cUL	UL: Class 1, Div. 1	Exd IIC T6		Exd IIC T4	Exd IIC T4	
	Groups A,B,C,D	Groups B,C,D	Tamb (-40 to +50°C)		(Tamb -40 to	(Tamb -40 to +80°C)	
	IECEx	IECEx	UL: Class 1, Div. 1		+80°C)	UL: Class 1, Div. 1	
					· · · · · · · · · · · · · · · · · · ·		
	MED Marine (96/	MED Marine (96/	Groups B,C,D		UL: Class 1, Div. 1	Groups B,C,D	
	98/EC) Oxygen	98/EC) Oxygen	IECEx		Groups B,C,D	IECEx	
		0.1			IECEx		
	Only	Only			ILOLX		
EMC	Only EN 50270	Only EN 50270	EN 50270	EN 50270	EN 50270	EN 50270	EN 50270
EMC compliance			EN 50270 FCC Part 15	EN 50270 FCC Part 15		EN 50270 FCC Part 15	EN 50270 FCC Part 15

 * 3 / $_{4}$ " cable entry only available on aluminium junction boxes

Thank you for reading this data sheet.

For pricing or for further information, please contact us at our UK Office, using the details below.

UK Office Keison Products,

P.O. Box 2124, Chelmsford, Essex, CM1 3UP, England.

Tel: +44 (0)330 088 0560

Fax: +44 (0)1245 808399

Email: sales@keison.co.uk

Please note - Product designs and specifications are subject to change without notice. The user is responsible for determining the suitability of this product.